University of Bristol

Communication Systems and Network Group

Millimeter-Wave Networks for Vehicular Communication: Modeling and Performance Insights

Andrea Tassi - a.tassi@bristol.ac.uk

Malcolm Egan - Université Blaise Pascal, Clermont-Ferrand, FR Robert J. Piechocki and Andrew Nix - University of Bristol, UK

37th Meeting of the Wireless World Research Forum

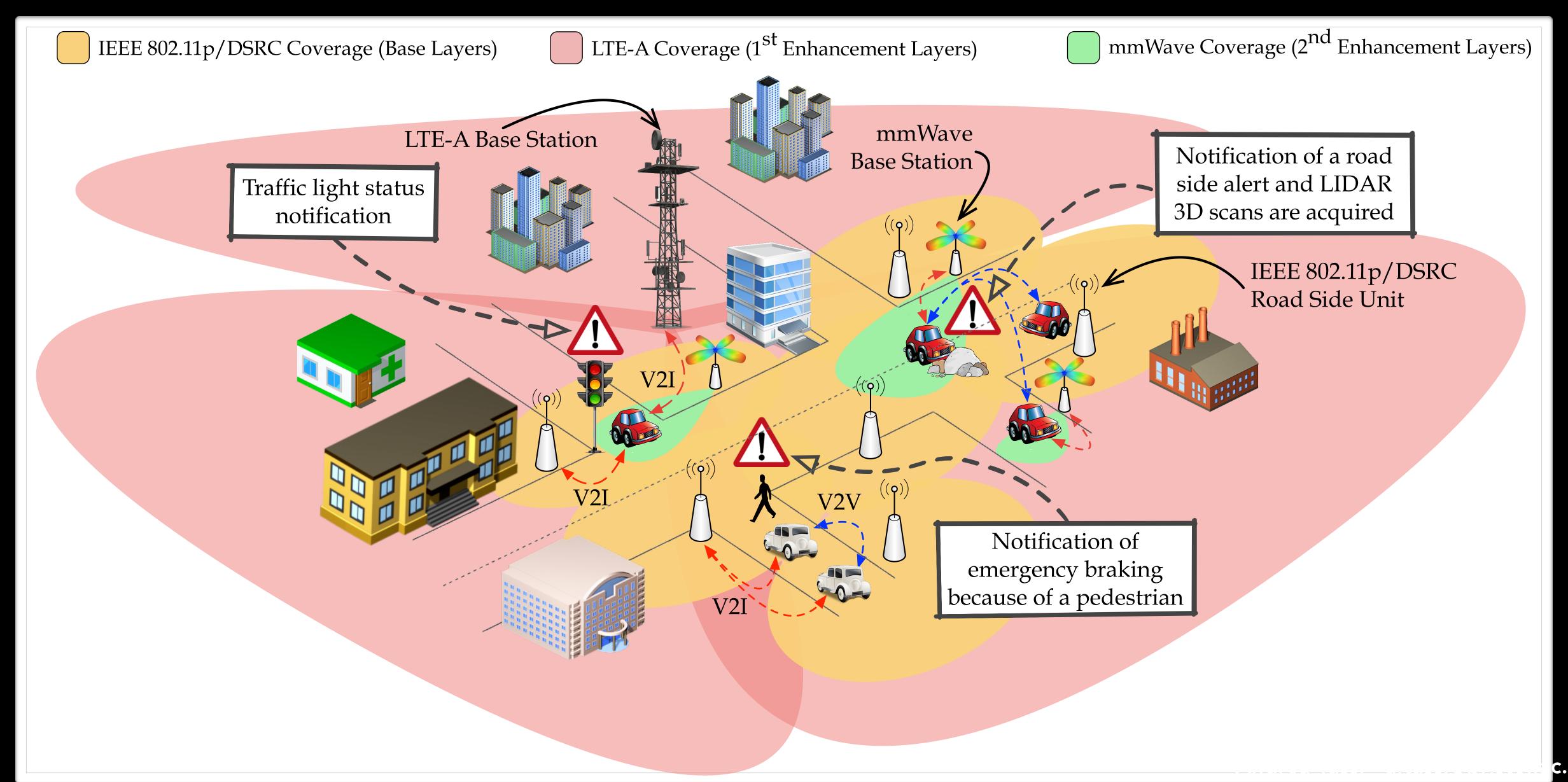
Index

- Why Should I Put Comms Onto Self-Driving Vehicles?
- ... and Why Should I go for mmWave Systems?
- Proposed mmWave V2I System Model
- Numerical Results
- Conclusions

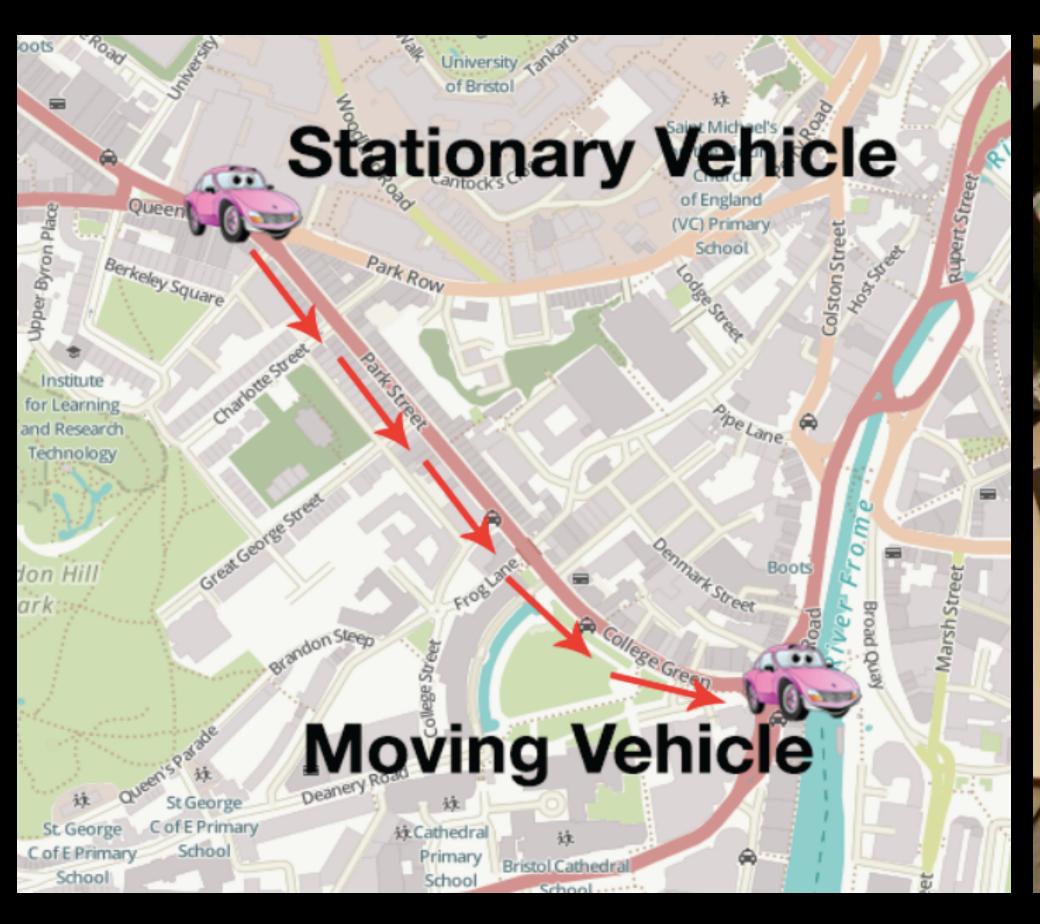
mmWave Comms for Next Generation ITSs

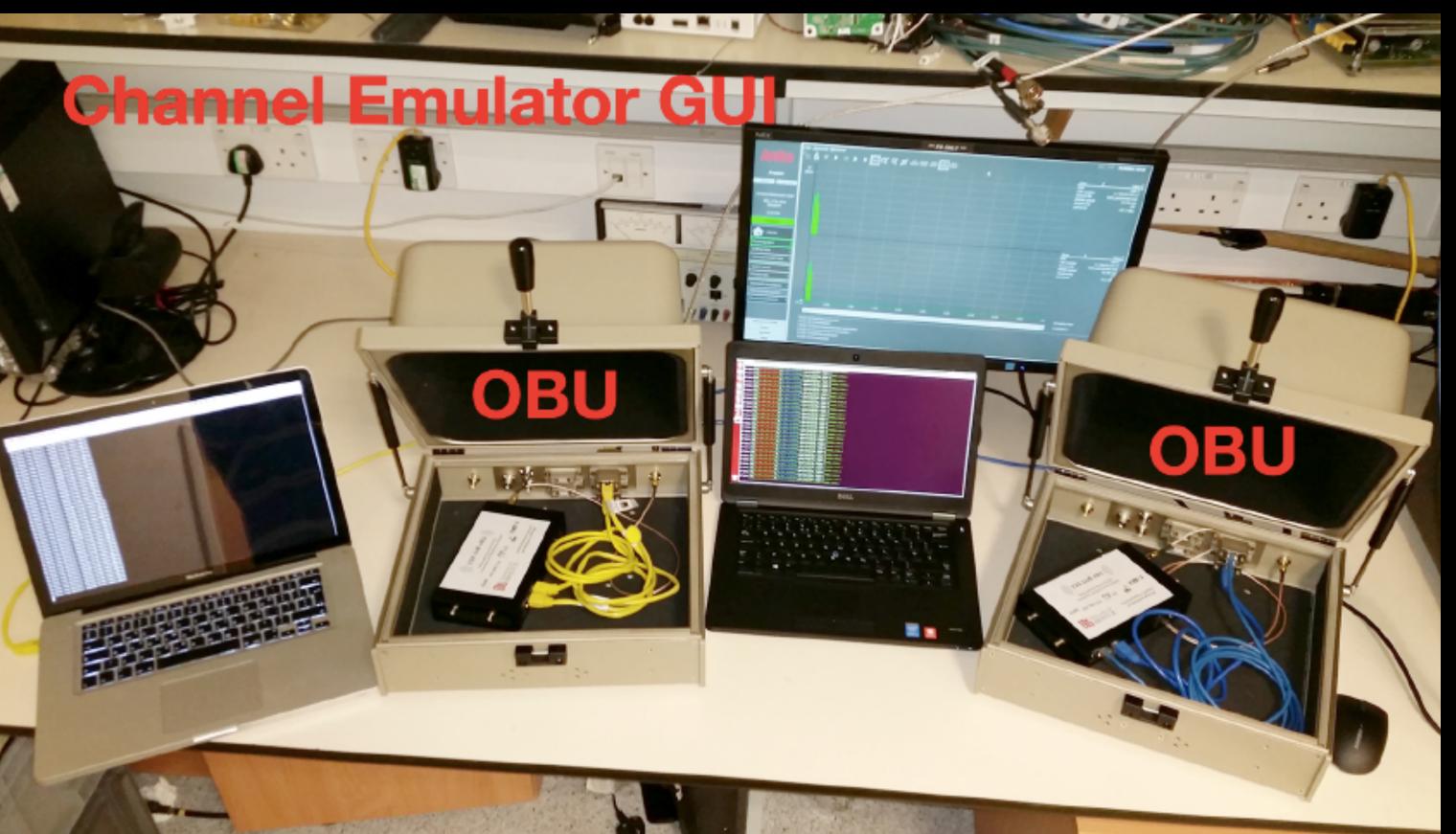
- The IEEE 802.11p/DSRC can achieve at most ~27 Mbps, in practice it is hard to observe that.
- However, DSRC standards are suitable for low-rate data services (for e.g., positioning beacon, emergency stop messages, etc.).
- On the other hand, future CAVs will require solutions ensuring gigabit-persecond communication links to achieve proper 'look-ahed' services (involving cameras, LIDARS, etc.), etc.
- It is reasonable to design hybrid networks integrating both mmWave and DSRC technologies

mmWave Comms for Next Generation ITSs



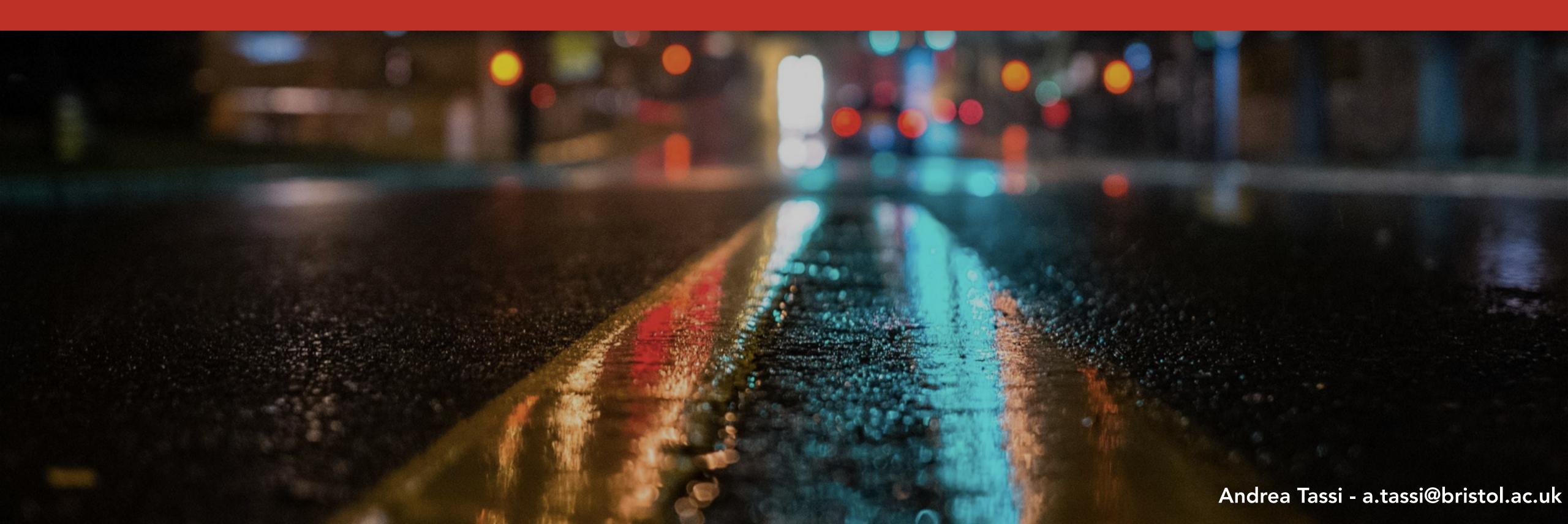
How Close Are We?





How Close Are We?

System Model

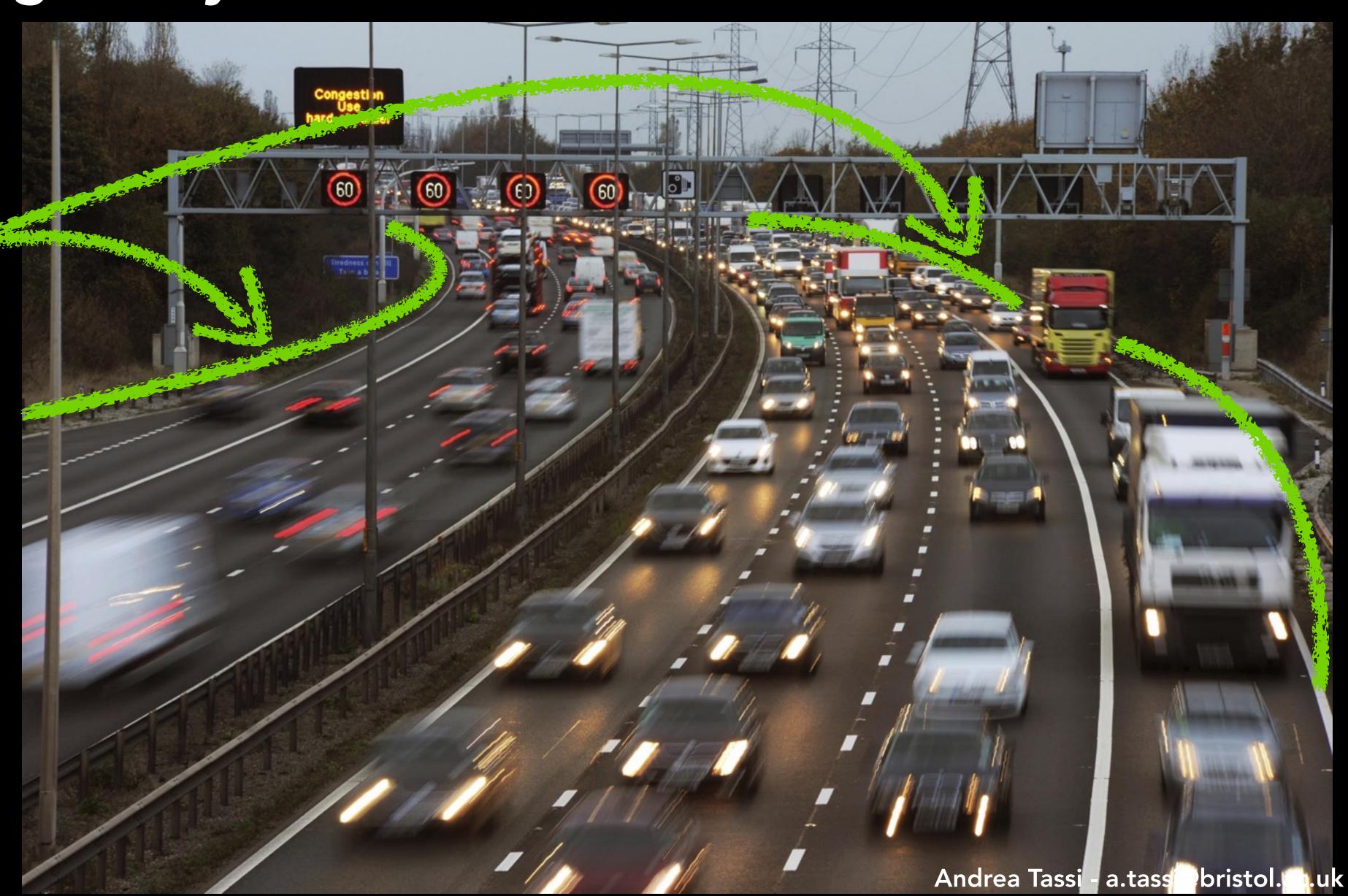


mannhave BSs

Placed at

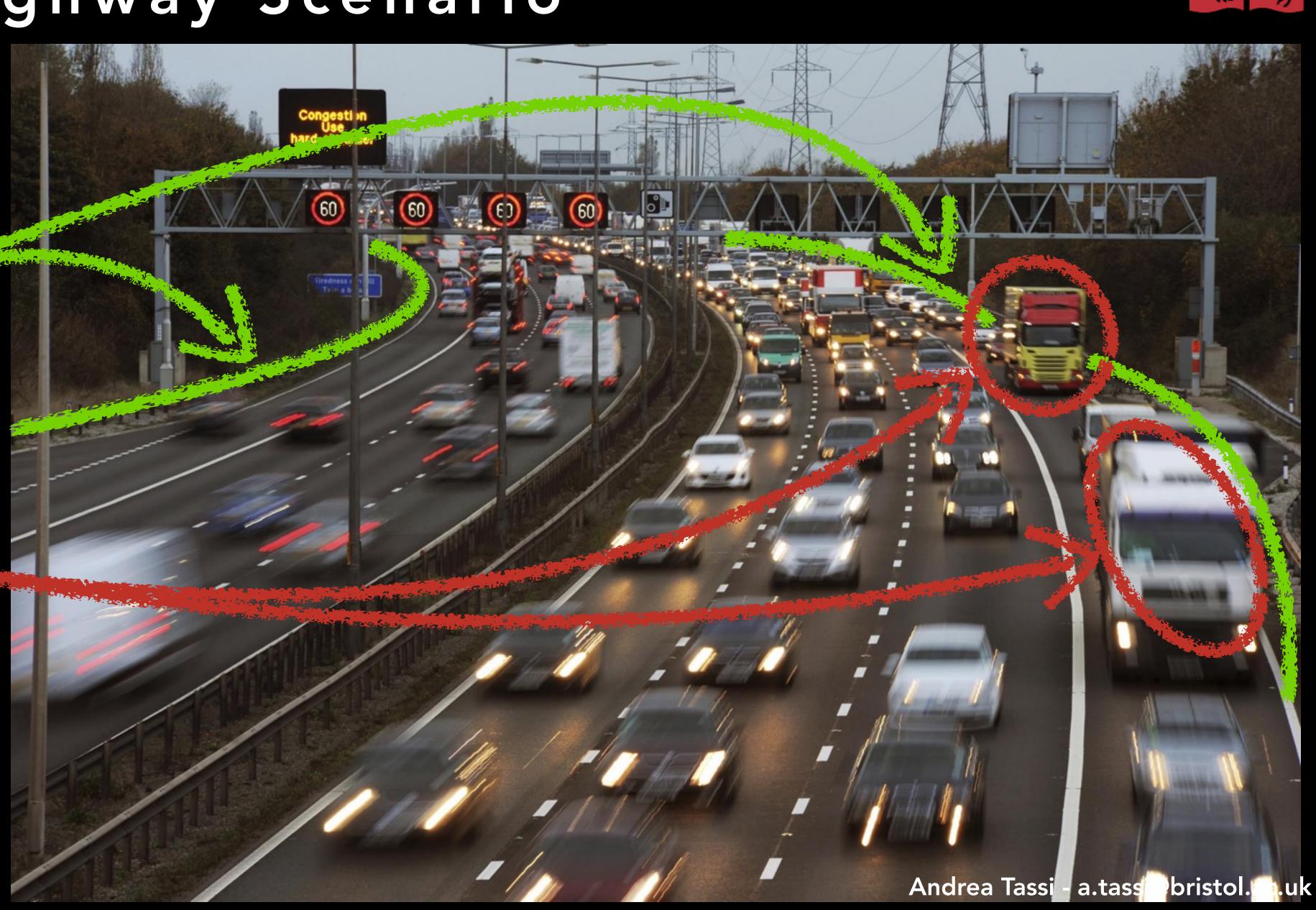
the side of

the road

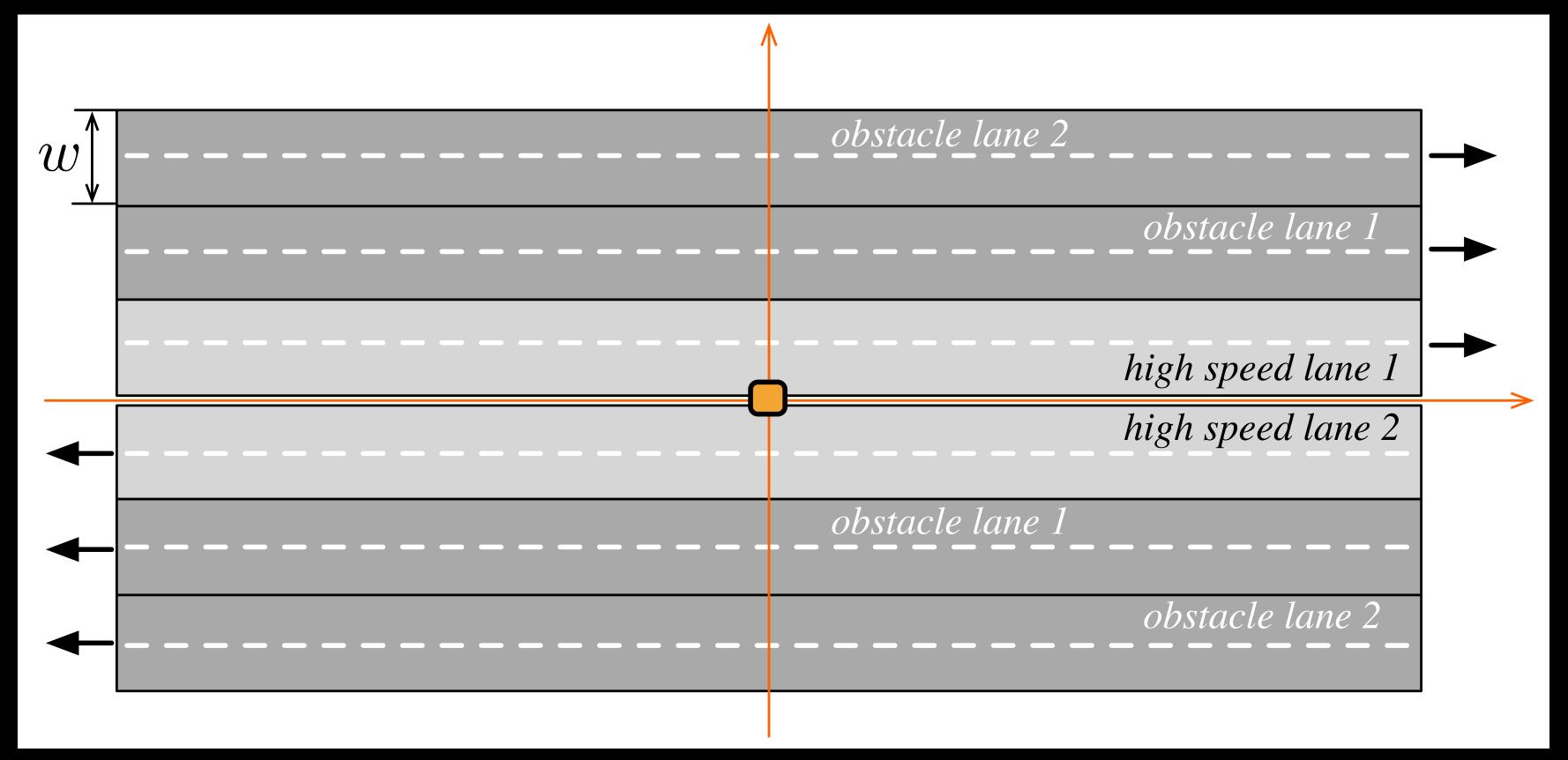


mmhave BSs placed at the side of the road

Obstacles

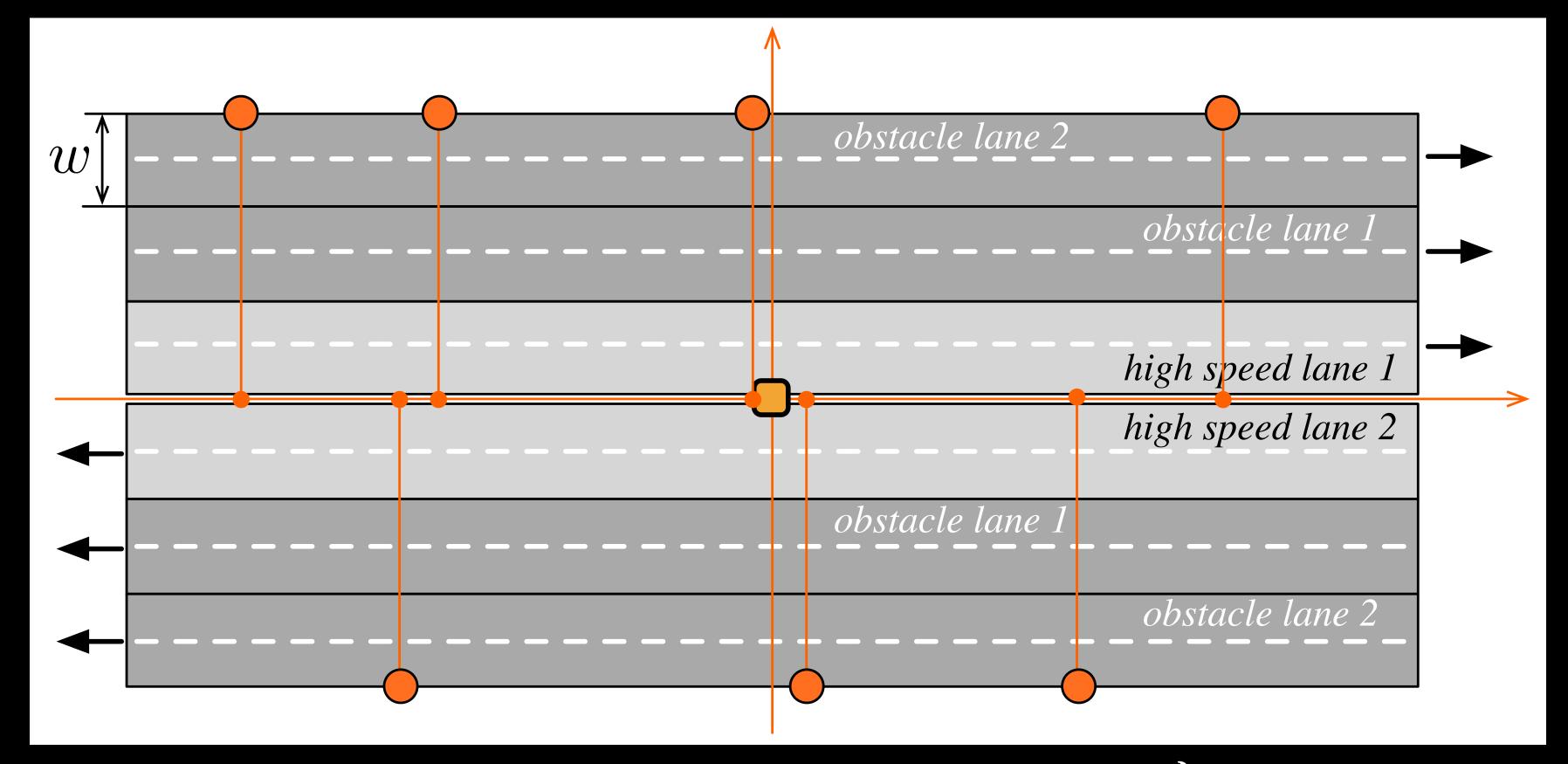


System Model (Road Layout)



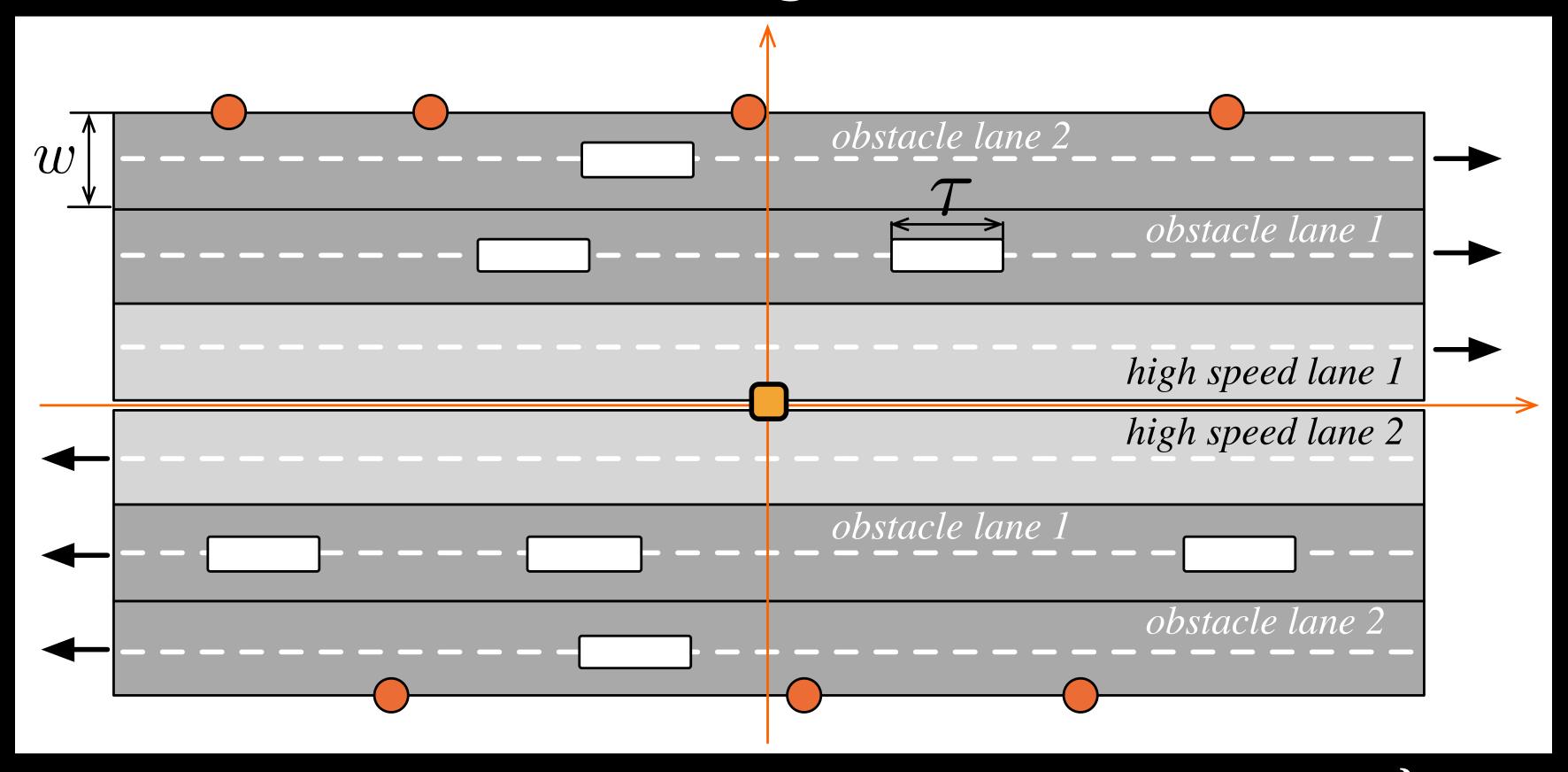
- Straight and homogeneous road section
- Vehicles are required to drive on the left hand side of the road
- We characterize the performance of a standard user placed at the origin of the axis.

System Model (BS Distribution)



- ullet x-comp. of BS positions follow a 1D PPP of density $\lambda_{
 m BS}$
- A BS is placed on a side of the road (upper/bottom side) with probability q=0.5. Hence, BSs on a side of the road define a 1D PPP of density $q\lambda_{\rm BS}$

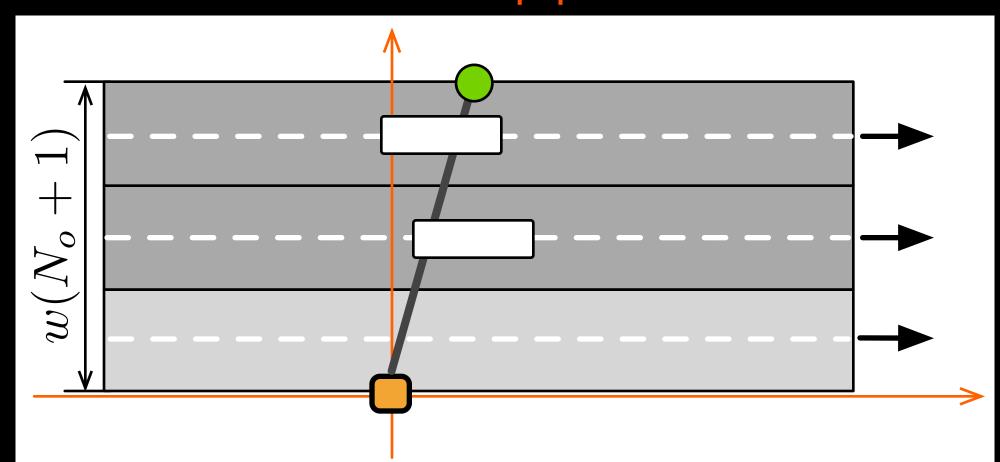
System Model (Blockage Distribution)

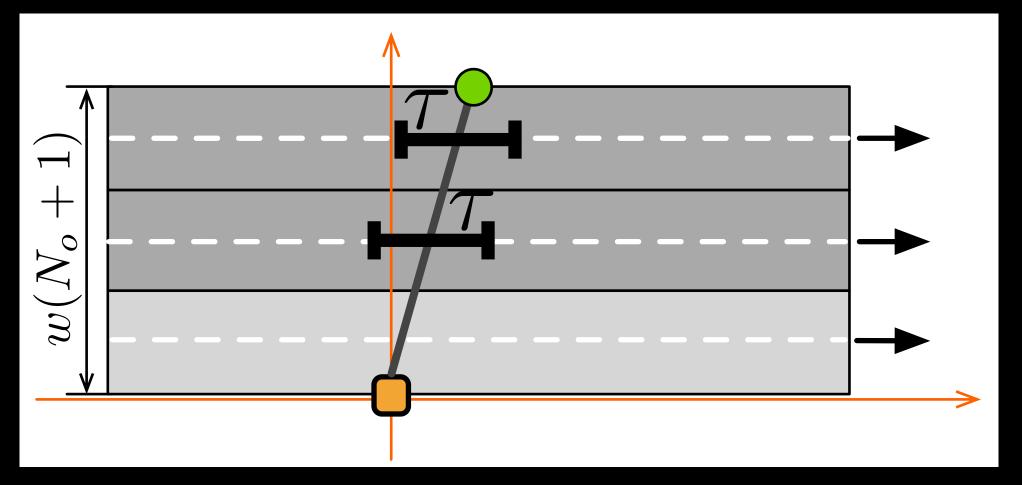


- ullet Obstacles on each obstacle lane follow a 1D PPP of density $\lambda_{
 m O,\ell}$
- ullet Obstacle processes are independent but the blockage density of lane ℓ on each traffic direction is the same
- ullet Each blockage is associated with a footprint of length ${\mathcal T}$

PL Model and User Association

• We approximate $p_{\rm L}$ with the probability that no blockages are present within a distance of au/2 on either side of the ray connecting the user to a BS. Hence, our approximation is independent on the distance of BS i to O





ullet The PL function associated with BS i is

$$\ell(r_i) = \mathbf{1}_{i,L} C_L r_i^{-\alpha_L} + (1 - \mathbf{1}_{i,L}) C_N r_i^{-\alpha_N}$$

The standard user always connects to the BS with the minimum PL component

PL Model and User Association

• We approximate $p_{\rm L}$ with the probability that no blockages are present within a distance of au/2 on either side of the ray connecting the user to a BS. Hence, our approximation is independent on the distance of BS i to O

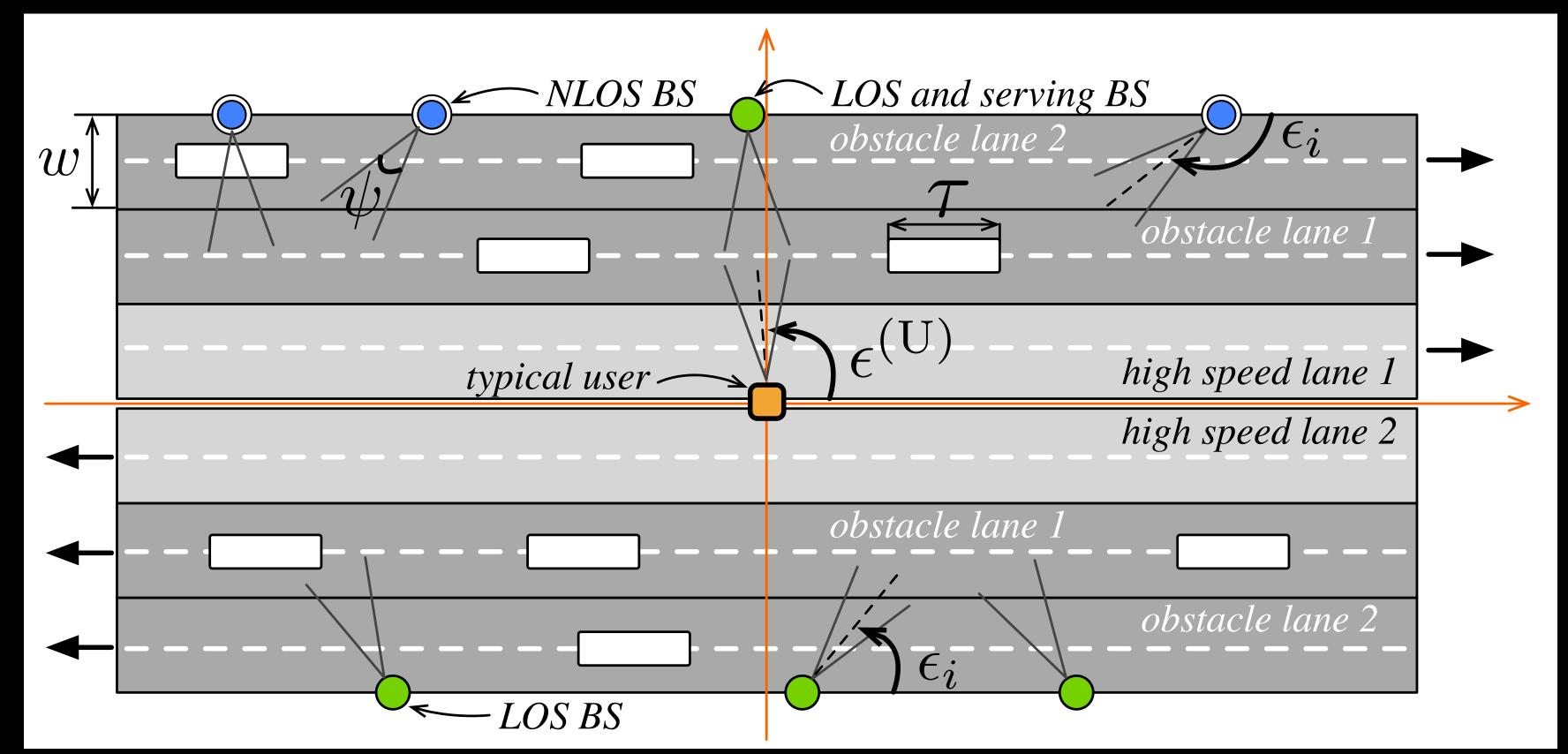
#Obs. lane
$$p_{\rm L}\cong\prod_{\ell=1}^{N_o}e^{-\lambda_{\rm o},\ell\, au}$$
 probability direction

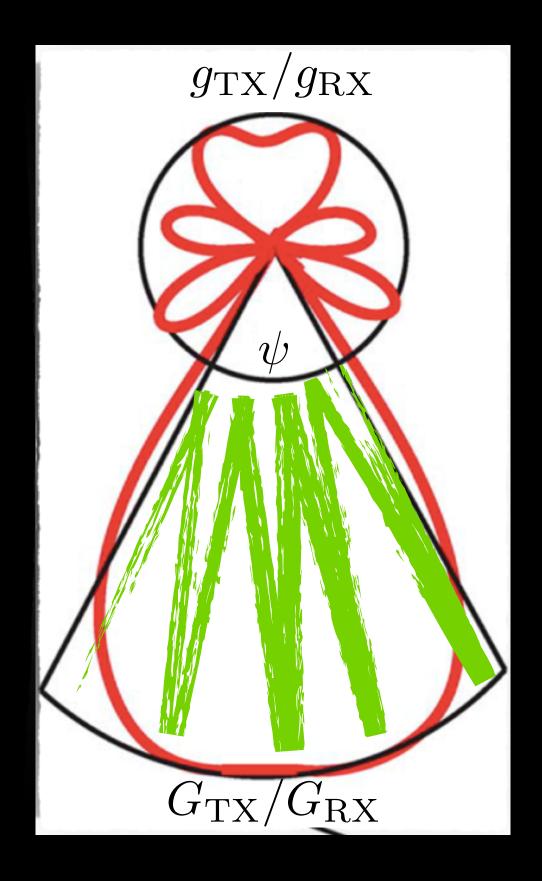
• The PL function associated with BS i is

$$\ell(r_i) = \mathbf{1}_{i,L} C_L r_i^{-\alpha_L} + (1 - \mathbf{1}_{i,L}) C_N r_i^{-\alpha_N}$$

The standard user always connects to the BS with the minimum PL component

System Model (Beam Steering)





- The main lobe of each BS is always entirely directed towards the road
- The user/BS beam alignment is assumed error-free
- The beam on an interfering BS is steered uniformly within 0° and 180°

SINR Outage and Rate Coverage

The Probability Framework

ullet Assume the user connects to BS 1, we define the SINR as

$$\mathrm{SINR}_O = \frac{h_1 \, \Delta_1 \, \ell(r_1)}{\sigma + \sum_{j=2}^b h_j \, \Delta_j \, \ell(r_j)}$$
 normalized thermal noise power

antenna

hj ~ EXP(1)

The Probability Framework

Assume the user connects to BS 1, we define the SINR as

$$\mathrm{SINR}_O = \frac{h_1 \, \Delta_1 \, \ell(r_1)}{\sigma + \sum_{j=2}^b h_j \, \Delta_j \, \ell(r_j)}$$
 normalized thermal noise power

ancenna gains

hir EXP(1)

We characterize the following SINR outage

$$\begin{split} \underbrace{\mathbb{P}_{\mathrm{CI}}(\theta)}_{\mathrm{P_{\mathrm{CI}}}(\theta)} &= \mathrm{P_{\mathrm{L}}} - \underbrace{\mathbb{P}[\mathrm{SINR}_O > \theta \text{ and std. user served in LOS}]}_{\mathrm{P_{\mathrm{CN}}}(\theta)} \\ &+ \mathrm{P_{\mathrm{N}}} - \underbrace{\mathbb{P}[\mathrm{SINR}_O > \theta \text{ and std. user served in NLOS}]}_{\mathrm{P_{\mathrm{CN}}}(\theta)} & \text{Andrea Tassi - a.tassi@} \end{split}$$

Probability of Being Served in LOS/NLOS

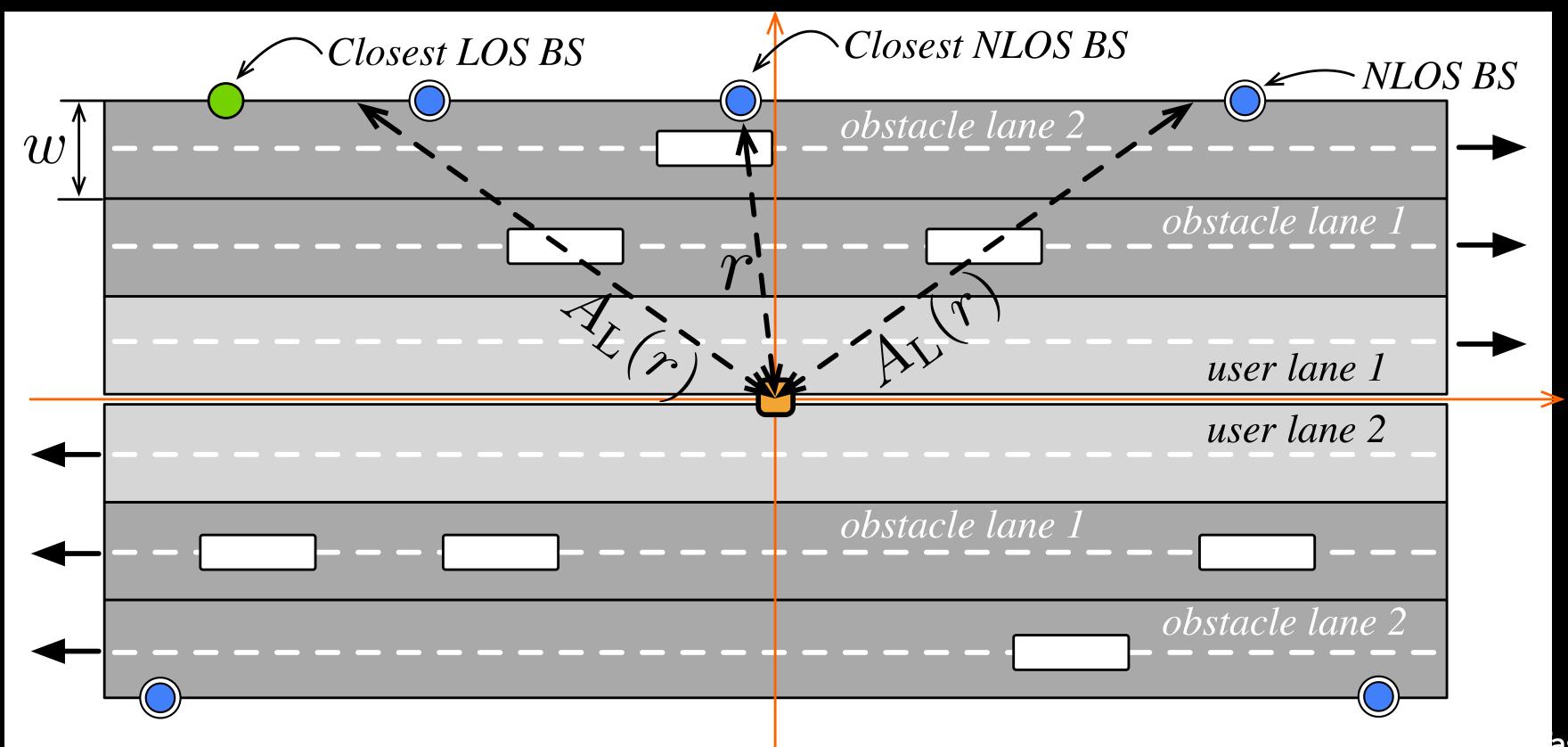
The standard user connects to a NLOS BS with probability

$$P_{\rm N} = \int_{w(N_o+1)}^{\infty} f_{\rm N}(r) e^{-2\lambda_{\rm L}} \sqrt{A_{\rm L}^2(r) - w^2(N_o+1)^2} \, dr$$
 PDF of the closest NLOS BS PPP LOS void probability in the segment [0, AL(r)]

Probability of Being Served in LOS/NLOS

The standard user connects to a NLOS BS with probability

$$P_{N} = \int_{w(N_{o}+1)}^{\infty} f_{N}(r)e^{-2\lambda_{L}}\sqrt{A_{L}^{2}(r)-w^{2}(N_{o}+1)^{2}} dr$$



assi - a.tassi@bristol.ac.uk

Probability of Being Served in LOS/NLOS

The standard user connects to a NLOS BS with probability

$$\begin{aligned} \mathrm{P_N} &= \int_{w(N_o+1)}^{\infty} f_\mathrm{N}(r) e^{-2\lambda_\mathrm{L} \sqrt{A_\mathrm{L}^2(r) - w^2(N_o+1)^2}} \, dr \\ \text{where} \\ A_\mathrm{L}(r) &= \max \left\{ w(N_o+1) \left[\frac{C_\mathrm{N}}{C_\mathrm{L}} r^{-\alpha_\mathrm{N}} \right]^{-\frac{1}{\alpha_\mathrm{L}}} \right\} \quad \text{from} \\ C_\mathrm{N} r^{-\alpha_\mathrm{N}} &= C_\mathrm{L} A_\mathrm{L}^{-\alpha_\mathrm{L}} \end{aligned}$$

$$ullet$$
 While, $P_{
m L}=1-P_{
m N}$

$$\underbrace{\mathbb{P}[\text{SINR}_O < \theta]}_{\text{P}_{\text{CL}}(\theta)} = \text{P}_{\text{L}} - \underbrace{\mathbb{P}[\text{SINR}_O > \theta \text{ and std. user served in LOS}]}_{\text{P}_{\text{CN}}(\theta)} + \text{P}_{\text{N}} - \underbrace{\mathbb{P}[\text{SINR}_O > \theta \text{ and std. user served in NLOS}]}_{\text{P}_{\text{CN}}(\theta)}$$

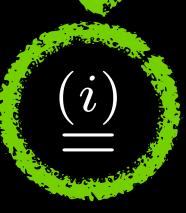
$$\underbrace{\mathbb{P}[\text{SINR}_O < \theta]}_{\text{P}_{\text{L}}} = \underbrace{\mathbb{P}_{\text{L}} - \mathbb{P}[\text{SINR}_O > \theta \text{ and std. user served in LOS}]}_{\text{P}_{\text{CN}}(\theta)} + \underbrace{\mathbb{P}_{\text{N}} - \mathbb{P}[\text{SINR}_O > \theta \text{ and std. user served in NLOS}]}_{\text{P}_{\text{CN}}(\theta)}$$



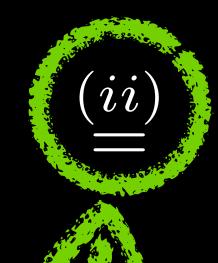
$$\underbrace{\mathbb{P}[\text{SINR}_O < \theta]}_{\text{P}_{\text{CL}}(\theta)} = \text{P}_{\text{L}} - \underbrace{\mathbb{P}[\text{SINR}_O > \theta \text{ and std. user served in LOS}]}_{\text{P}_{\text{CN}}(\theta)} + \text{P}_{\text{N}} - \underbrace{\mathbb{P}[\text{SINR}_O > \theta \text{ and std. user served in NLOS}]}_{\text{P}_{\text{CN}}(\theta)}$$

$$P_{CL}(\theta)$$

$$P_{CL}(\theta) = \mathbb{P}\left[\frac{h_1 \Delta_1 \ell(r_1)}{\sigma + I} > \theta \text{ and std. user is served in LOS}\right]$$



$$\mathbb{E}_{\mathrm{I}} \int_{w(N_o+1)}^{+\infty} e^{-\frac{(\sigma+\mathrm{I})\theta}{\Delta_1 \mathrm{C_L}} r_1^{\alpha_{\mathrm{L}}}} f_{\mathrm{L}}(r_1) \mathrm{F_N}(\mathrm{A_N}(r_1)) dr_1$$



$$\int_{w(N_o+1)}^{+\infty} e^{-\frac{\sigma\theta}{\Delta_1 C_L} r_1^{\alpha_L}} \mathcal{L}_{I,L} \left(\frac{\theta r_1^{\alpha_L}}{\Delta_1 C_L} \right) f_L(r_1) F_N(A_N(r_1)) dr_1$$

Expectation ware I

Prob. of not being served in NLOS

$$\mathbb{P}[SINR_O < \theta] = P_L - \mathbb{P}[SINR_O > \theta \text{ and std. user served in LOS}]
+ P_N - \mathbb{P}[SINR_O > \theta \text{ and std. user served in NLOS}]$$

$$P_{CN}(\theta)$$

• As α_N increases, in order to be convenient, a NLOS BS has to be quite close to O. Up to a point where P_L is (almost) 1. If so,

$$P_{T}(\theta) \cong 1 - \int_{w(N_{o}+1)}^{+\infty} e^{-\frac{\theta\sigma}{\Delta_{1}C_{L}}r_{1}^{\alpha_{L}}} \mathcal{L}_{I,L} \left(\frac{\theta r_{1}^{\alpha_{L}}}{\Delta_{1}C_{L}}\right) f_{L}(r_{1}) dr_{1}$$

$$\mathbb{P}[SINR_O < \theta] = P_L - \mathbb{P}[SINR_O > \theta \text{ and std. user served in LOS}]
+ P_N - \mathbb{P}[SINR_O > \theta \text{ and std. user served in NLOS}]$$

$$\mathbb{P}_{CL}(\theta)$$

• As $lpha_N$ increases, in order to be convenient, a NLOS BS has to be quite close to O. Up to a point where P_L is (almost) 1. If so,

$$P_{\mathrm{T}}(\theta) \cong 1 - \int_{w(N_o+1)}^{+\infty} e^{-\frac{\theta\sigma}{\Delta_1 C_{\mathrm{L}}} r_1^{\alpha_{\mathrm{L}}}} \mathcal{L}_{\mathrm{I},\mathrm{L}} \left(\frac{\theta r_1^{\alpha_{\mathrm{L}}}}{\Delta_1 C_{\mathrm{L}}}\right) f_{\mathrm{L}}(r_1) dr_1$$

• The rate coverage follows from the Fubini's theorem (for a bandwidth W)

$$R_{\rm C}(\kappa) = 1 - P_{\rm T}(2^{\kappa/W} - 1)$$

A Fundamental Result

 We proved that the Laplace transform of the interference component generated by the BSs on the upper/bottom side of the road (S = U, S = B) that are in LOS/NLOS with the user (E = L, E = N) can be approximated as

$$\mathcal{L}_{\mathrm{I}_{\mathrm{S},\mathrm{E}},\mathbb{E}_{1}}(s) \cong \prod_{\substack{\mathbb{S}_{1} \in \{\mathrm{U},\mathrm{B}\},\\ (a,b,\Delta) \in \mathcal{C}_{|\mathrm{x}_{1}|,\mathbb{S}_{1},\mathrm{E}_{1},\mathrm{S},\mathrm{E}}}} \sqrt{\mathcal{L}_{\mathrm{I}_{\mathrm{S},\mathrm{E}},\mathbb{E}_{1}}(s;a,b,\Delta)}$$

Conditioned of being served in LOS/NLOS ($\mathbb{E}_1 = L$, $\mathbb{E}_1 = N$).

Where the fundamental Laplace transform term is...

$$\mathcal{L}_{\mathrm{I}_{\mathrm{S},\mathrm{E}},\mathrm{\mathbb{E}}_{1}}(s;a,b,\Delta) \cong \exp\left(-\left(\mathbb{E}_{h}[\Theta(h,\Delta)]+\mathbb{E}_{h}[\Lambda(h,\Delta)]\right)\right)$$

$$\mathbb{E}_h \left[\Theta(h, \Delta) \right] = 2q \lambda_{\mathrm{E}} \left[x^{-\alpha_{\mathrm{E}}^{-1}} \left(1 - \frac{1}{s\Delta x + 1} \right) \right]_{x=a^{-\alpha_{\mathrm{E}}}}^{b^{-\alpha_{\mathrm{E}}}}$$

$$\mathbb{E}_h \left[\Lambda(h, \Delta) \right] = -2q \lambda_{\mathrm{E}}(s\Delta)^{\frac{1}{\alpha_{\mathrm{E}}}} \left[t(-t^{-1})^{-\frac{1}{\alpha_{\mathrm{E}}}} \Gamma \left(\frac{1}{\alpha_{\mathrm{E}}} + 1 \right) \right]$$

$$\cdot_{2}\tilde{F}_{1}\left(\frac{1}{\alpha_{\mathrm{E}}}, \frac{1}{\alpha_{\mathrm{E}}} + 1; \frac{1}{\alpha_{\mathrm{E}}} + 2; -t\right) \Big]_{t=-(s\Delta a^{-\alpha_{\mathrm{E}}}+1)^{-1}}^{-(s\Delta b^{-\alpha_{\mathrm{E}}}+1)^{-1}}$$

$$\mathcal{L}_{\mathrm{I}_{\mathrm{S},\mathrm{E}},\mathbb{E}_{1}}(s,a,b,\Delta) \cong \exp\left(-\left(\mathbb{E}_{h}[\Theta(h,\Delta)] + \mathbb{E}_{h}[\Lambda(h,\Delta)]\right)\right)$$

$$\mathbb{E}_{h} \left[\Theta(h, \Delta) \right] = 2q \lambda_{\mathrm{E}} \left[x^{-\alpha_{\mathrm{E}}^{-1}} \left(1 - \frac{1}{s\Delta x + 1} \right) \right]_{x=a^{-\alpha_{\mathrm{E}}}}^{b^{-\alpha_{\mathrm{E}}}}$$

$$\mathbb{E}_h \left[\Lambda(h, \Delta) \right] = -2q \lambda_{\mathcal{E}}(s\Delta)^{\frac{1}{\alpha_{\mathcal{E}}}} \left| t(-t^{-1})^{-\frac{1}{\alpha_{\mathcal{E}}}} \Gamma \left(\frac{1}{\alpha_{\mathcal{E}}} + 1 \right) \right|$$

$$\cdot _{2}\tilde{F}_{1}\left(\frac{1}{\alpha_{\mathrm{E}}}, \frac{1}{\alpha_{\mathrm{E}}} + 1; \frac{1}{\alpha_{\mathrm{E}}} + 2; -t\right) \begin{bmatrix} -(s\Delta b^{-\alpha_{\mathrm{E}}} + 1)^{-1} \\ t = -(s\Delta a^{-\alpha_{\mathrm{E}}} + 1)^{-1} \end{bmatrix}$$

Parametrization of $\mathcal{L}_{\mathrm{I}_{\mathrm{S},\mathrm{E}},\mathbb{E}_{1}}$

$\langle S_1, \mathbb{E}_1, S, E \rangle$	Conditions on $ x_1 $	$(a, b, \Delta) \in \mathcal{C}_{ \mathbf{x}_1 , \mathbb{S}_1, \mathbb{E}_1, \mathbf{S}, \mathbf{E}}$
	For any $ x_1 $	$(x_1 , K, g_{\mathrm{TX}}G_{\mathrm{RX}}),$
< U, L, U, L $>$	such that $J > 0$	$(K, +\infty, g_{\mathrm{TX}}g_{\mathrm{RX}}),$
		$(x_1 , +\infty, g_{\mathrm{TX}}g_{\mathrm{RX}})$
		$(x_1 , K, g_{\mathrm{TX}}G_{\mathrm{RX}}),$
	For any $ x_1 $ such that $J \leq 0$	$(K, +\infty, g_{\mathrm{TX}}g_{\mathrm{RX}}),$
		$(x_1 , J , g_{\mathrm{TX}}G_{\mathrm{RX}}),$
		$(J , +\infty, g_{\mathrm{TX}}g_{\mathrm{RX}})$
		$(x_{\mathrm{N}}(r_{1}), J, g_{\mathrm{TX}}g_{\mathrm{RX}}),$
	For any $ x_1 $	$(x_{\rm N}(r_1), +\infty, g_{\rm TX}g_{\rm RX}),$
$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $	such that $J > 0$	$(J, K, g_{\mathrm{TX}}G_{\mathrm{RX}}),$
		$(K, +\infty, g_{\mathrm{TX}}g_{\mathrm{RX}})$
		Refer to the case
	For any $ x_1 $	$<$ U, L, U, L $>$ ($J \le 0$)
	such that $J \leq 0$	and replace $ x_1 $
		with $x_{\rm N}(r_1)$
< U, L, B, L $>$	For any $ x_1 $	$(x_1 , +\infty, g_{\mathrm{TX}}g_{\mathrm{RX}}),$
		$(x_1 , +\infty, g_{\mathrm{TX}}g_{\mathrm{RX}}),$
< U, L, B, N $>$	Refer to the case $<$ U, L, B, L $>$ and	
	replace $ x_1 $ with $x_N(r_1)$	
< U, N, U, L $>$	For any $ x_1 $ such that $x_{\rm L}(r_1) > K$	Refer to the case
		$<\mathrm{U,L,B,L}>$ and
		replace $ x_1 $ with $x_{\rm L}(r_1)$
	For any $ x_1 $	Refer to the case
	such that $x_{\rm L}(r_1) \leq K$	< U, L, U, L $>$ and
	_	replace $ x_1 $ with $x_{\rm L}(r_1)$
$\langle U, N, U, N \rangle$	Refer to the case $<$ U, L, U, L $>$	
< U, N, B, L $>$	Refer to the case $\langle U, L, B, L \rangle$ and	
	replace x_1 with $x_{\rm L}(r_1)$	
$\langle U, N, B, N \rangle$	Refer to the case $<$ U, L, B, L $>$	
Cases where	Refer to the correspondent cases	
$\mathbb{S}_1 = \mathbf{B}, \mathbf{S} = \mathbf{B}$	where $S_1 = U$ and $S = U$	
Cases where	Refer to the correspondent cases	
$\mathbb{S}_1 = \mathbb{B}, \mathbb{S} = \mathbb{U}$	where $S_1 = U$ and $S = B$	

Finally, we can say

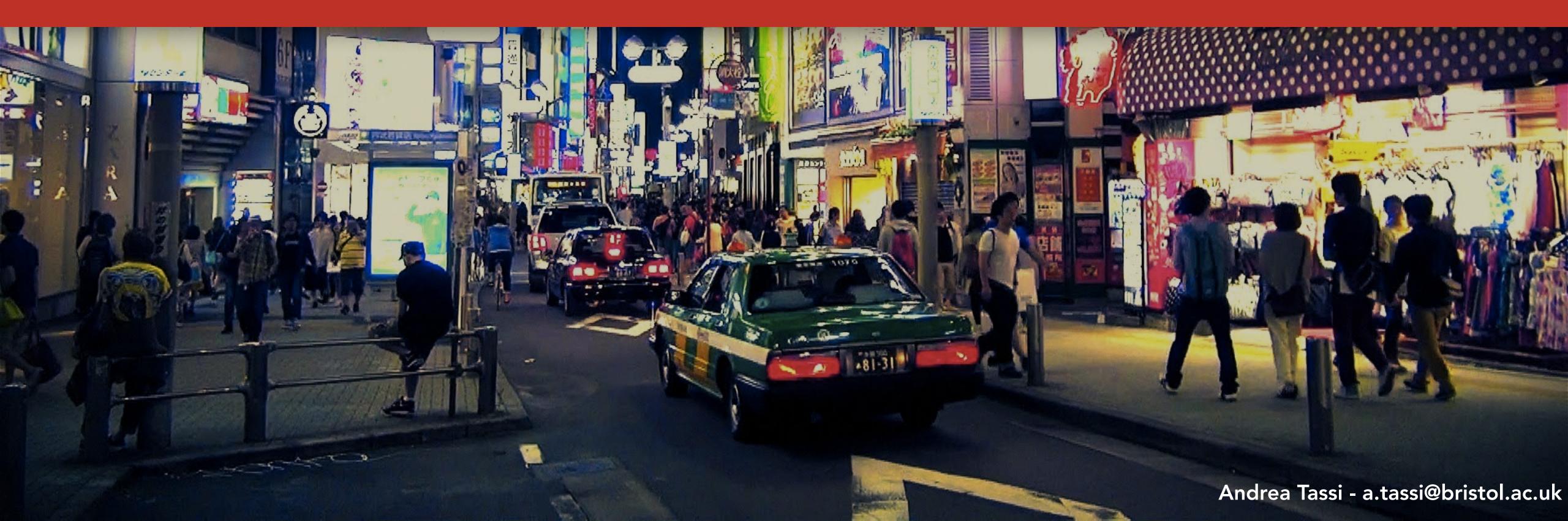
$$\mathcal{L}_{\mathrm{I},\mathbb{E}_{1}}(s)\cong\prod_{\mathrm{S}\in\{\mathrm{U},\mathrm{B}\},\mathrm{E}\in\{\mathrm{L},\mathrm{N}\}}\mathcal{L}_{I_{\mathrm{S},\mathrm{E}},\mathbb{E}_{1}}(s)$$

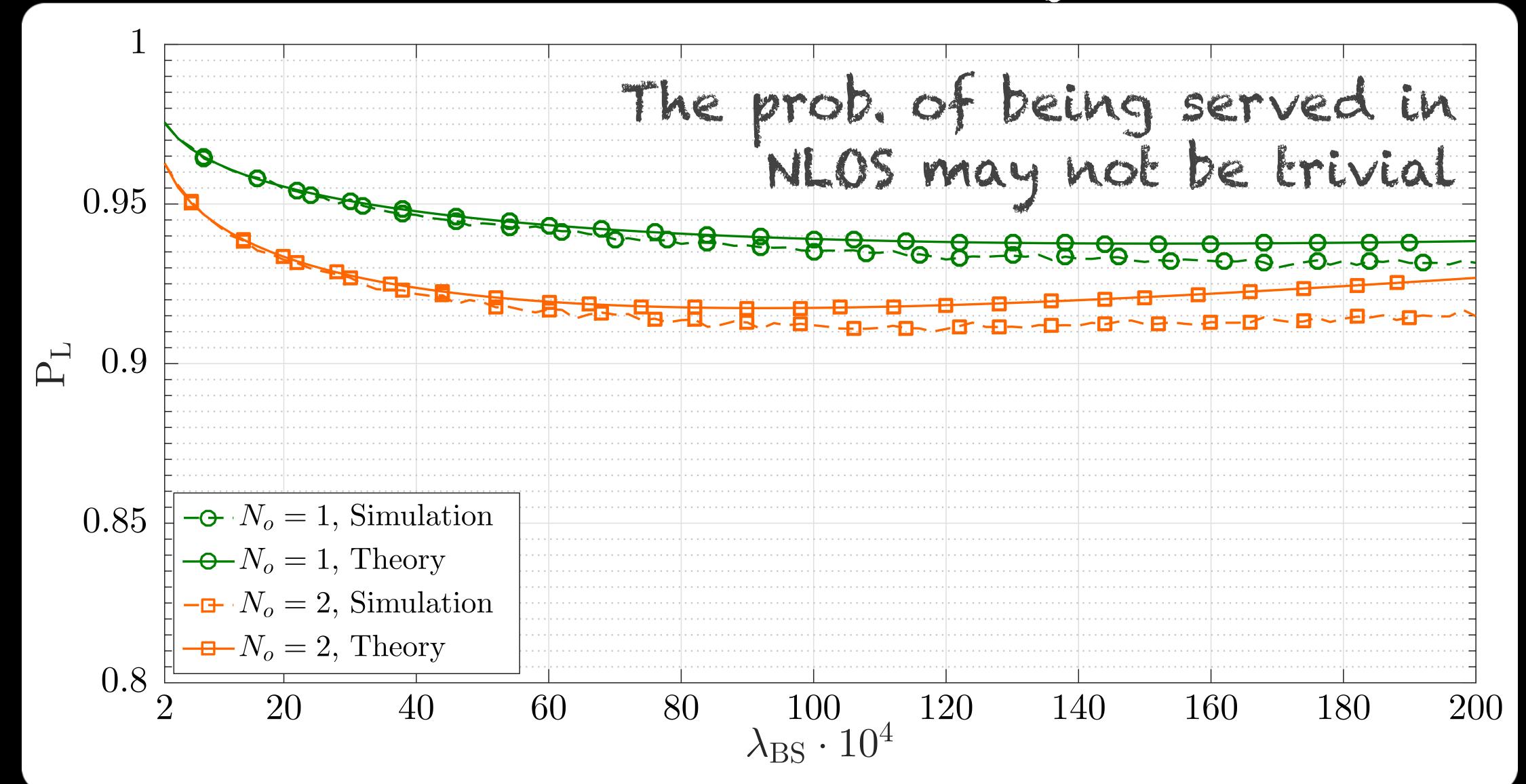
• For e.g., if $\mathbb{E}_1 = \mathsf{L}$ and $\mathsf{J} > \mathsf{0}$, it follows

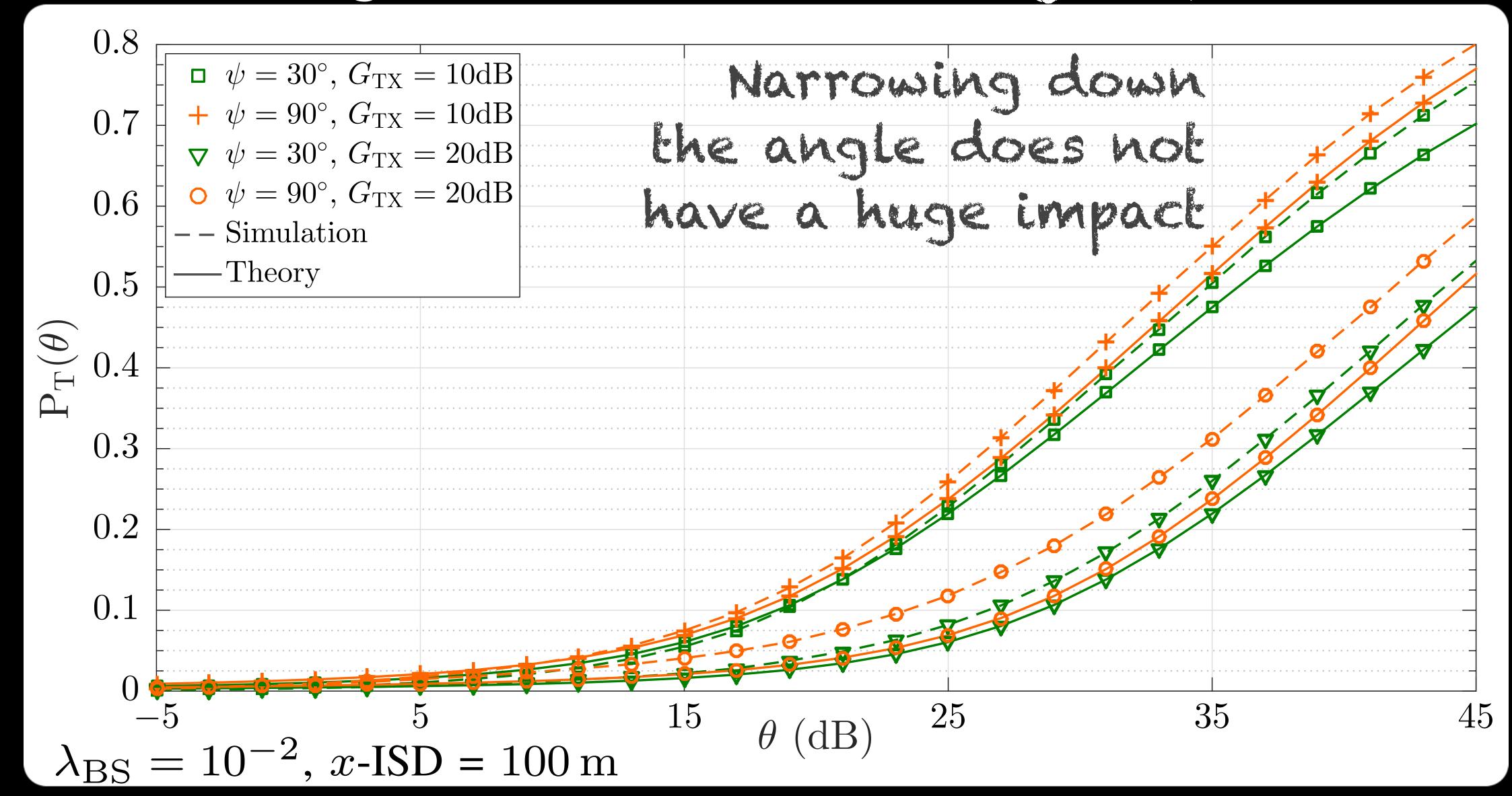
$$\mathcal{L}_{\mathrm{I},\mathbb{E}_{1}}(s) \cong \mathcal{L}_{\mathrm{I}_{\mathrm{S},\mathrm{E}},\mathbb{E}_{1}}(s;|x_{1}|,K,g_{\mathrm{TX}}G_{\mathrm{RX}}) \\ \cdot \mathcal{L}_{\mathrm{I}_{\mathrm{S},\mathrm{E}},\mathbb{E}_{1}}(s;x_{\mathrm{N}}(r_{1}),J,g_{\mathrm{TX}}g_{\mathrm{RX}}) \\ \cdot \mathcal{L}_{\mathrm{I}_{\mathrm{S},\mathrm{E}},\mathbb{E}_{1}}(s;J,K,g_{\mathrm{TX}}G_{\mathrm{RX}}) \\ \cdot \left(\mathcal{L}_{\mathrm{I}_{\mathrm{S},\mathrm{E}},\mathbb{E}_{1}}(s;K,+\infty,g_{\mathrm{TX}}g_{\mathrm{RX}})\right)^{2} \\ \cdot \left(\mathcal{L}_{\mathrm{I}_{\mathrm{S},\mathrm{E}},\mathbb{E}_{1}}(s;|x_{1}|,+\infty,g_{\mathrm{TX}}g_{\mathrm{RX}})\right)^{3} \\ \cdot \left(\mathcal{L}_{\mathrm{I}_{\mathrm{S},\mathrm{E}},\mathbb{E}_{1}}(s;x_{\mathrm{N}}(r_{1}),+\infty,g_{\mathrm{TX}}g_{\mathrm{RX}})\right)^{3}$$

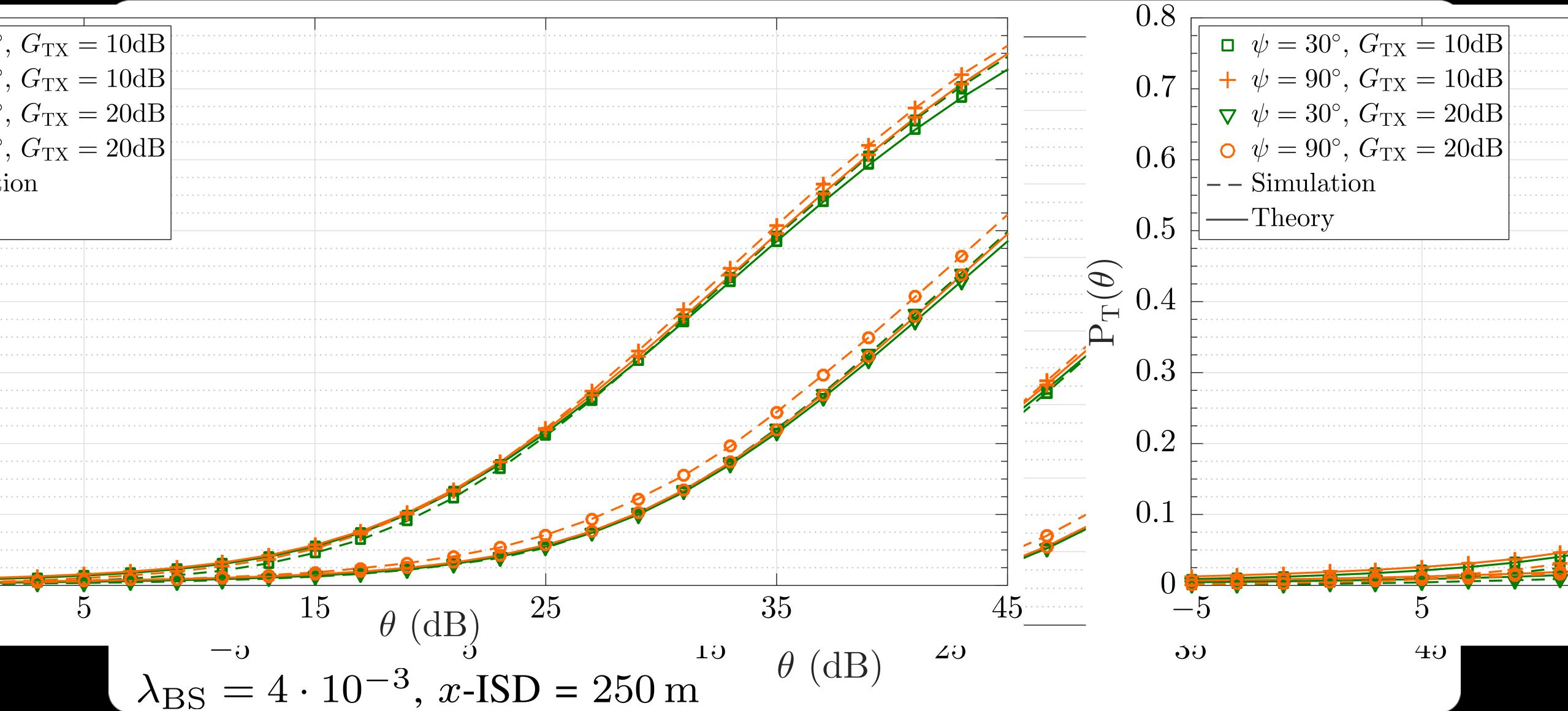
Andrea Tassi - a.tassi@bristol.ac.uk

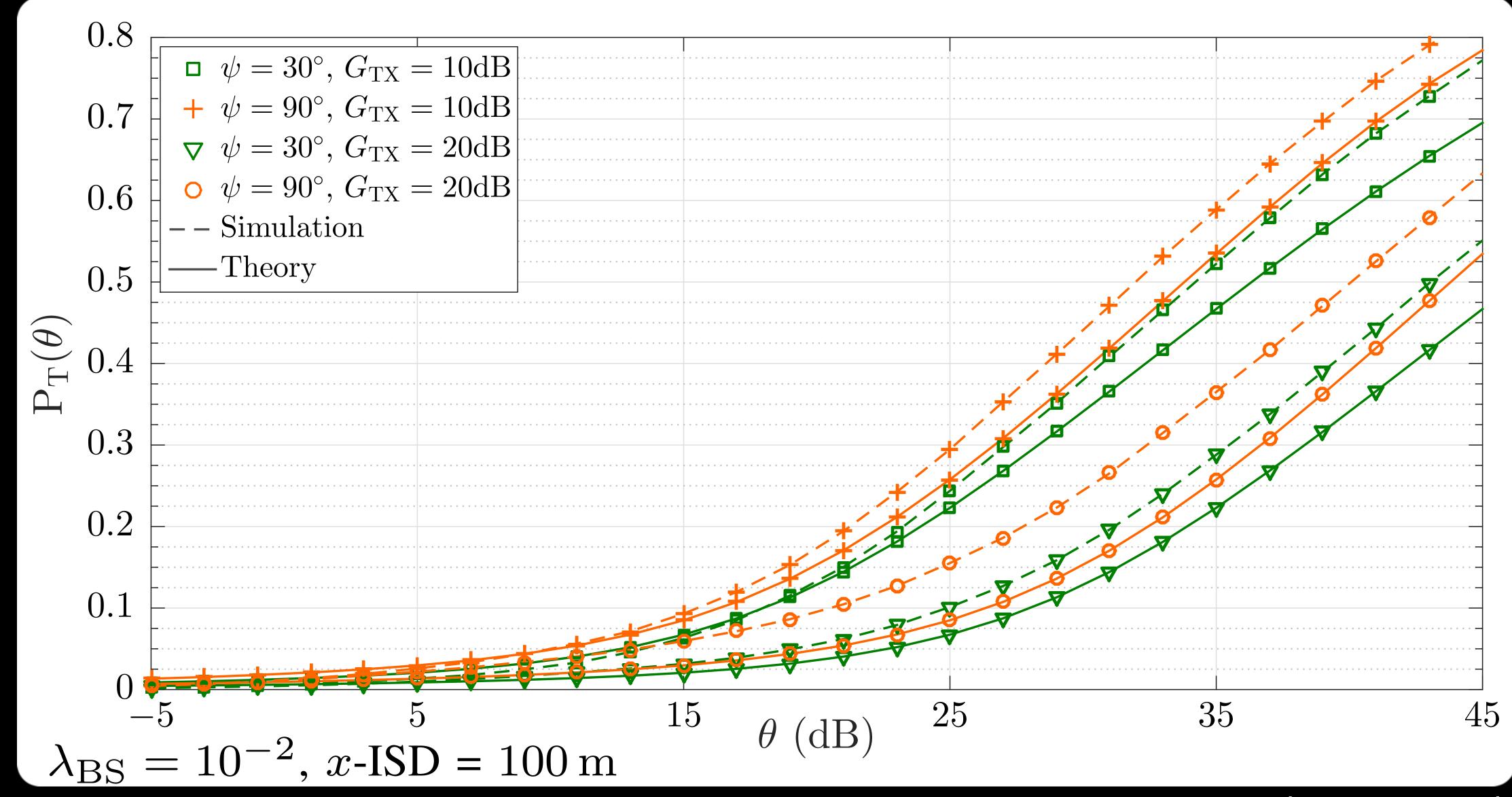
Numerical Results

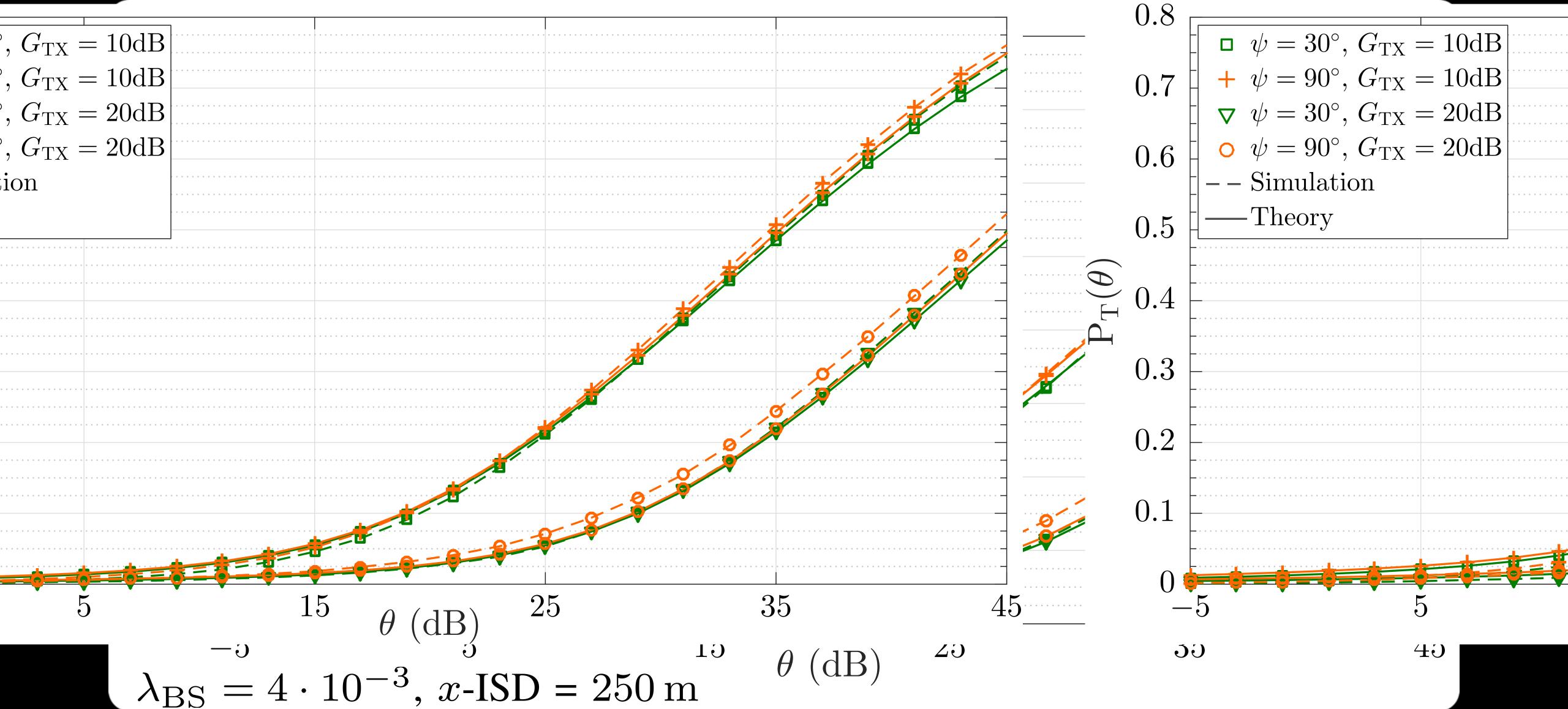


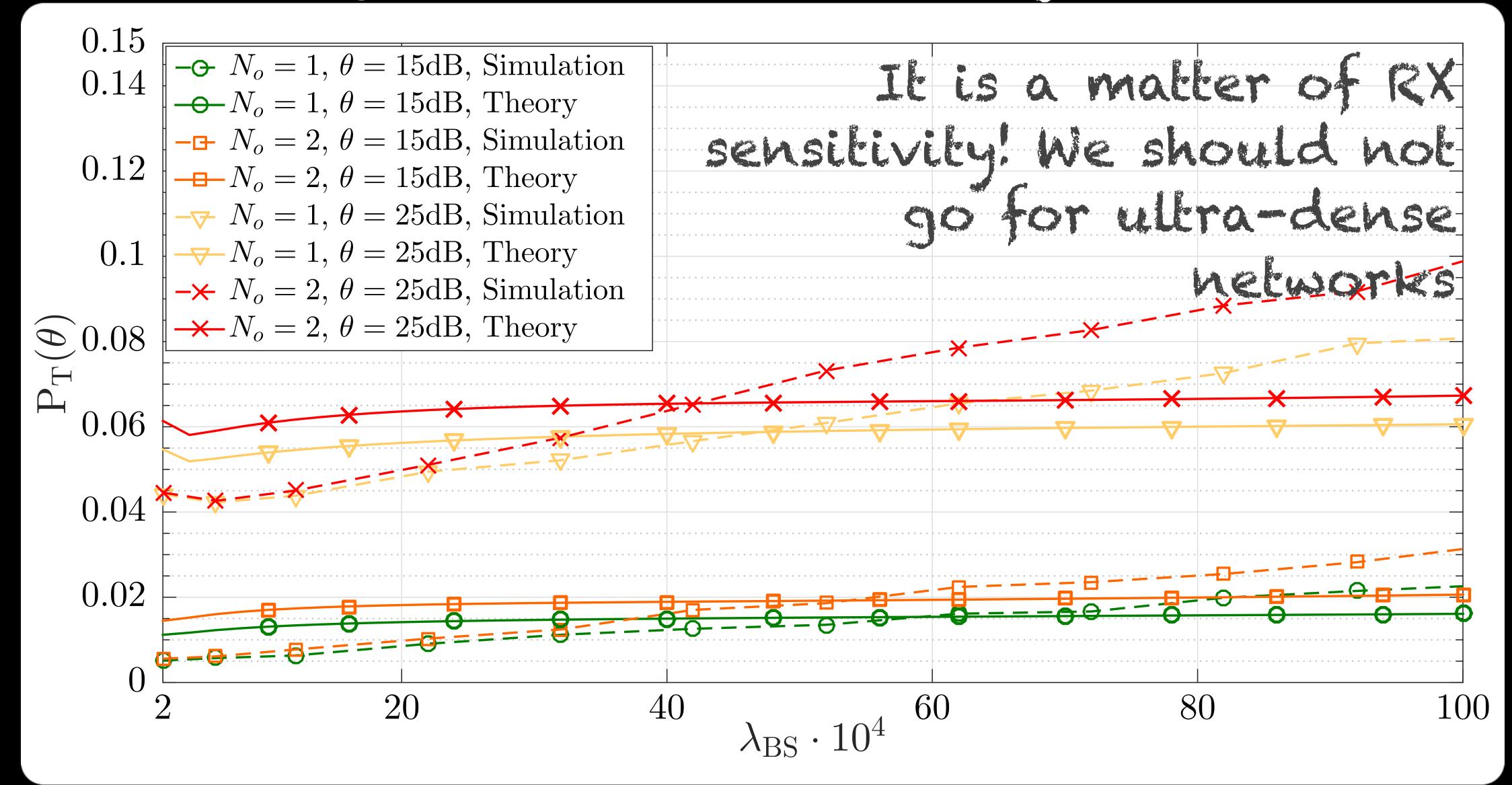


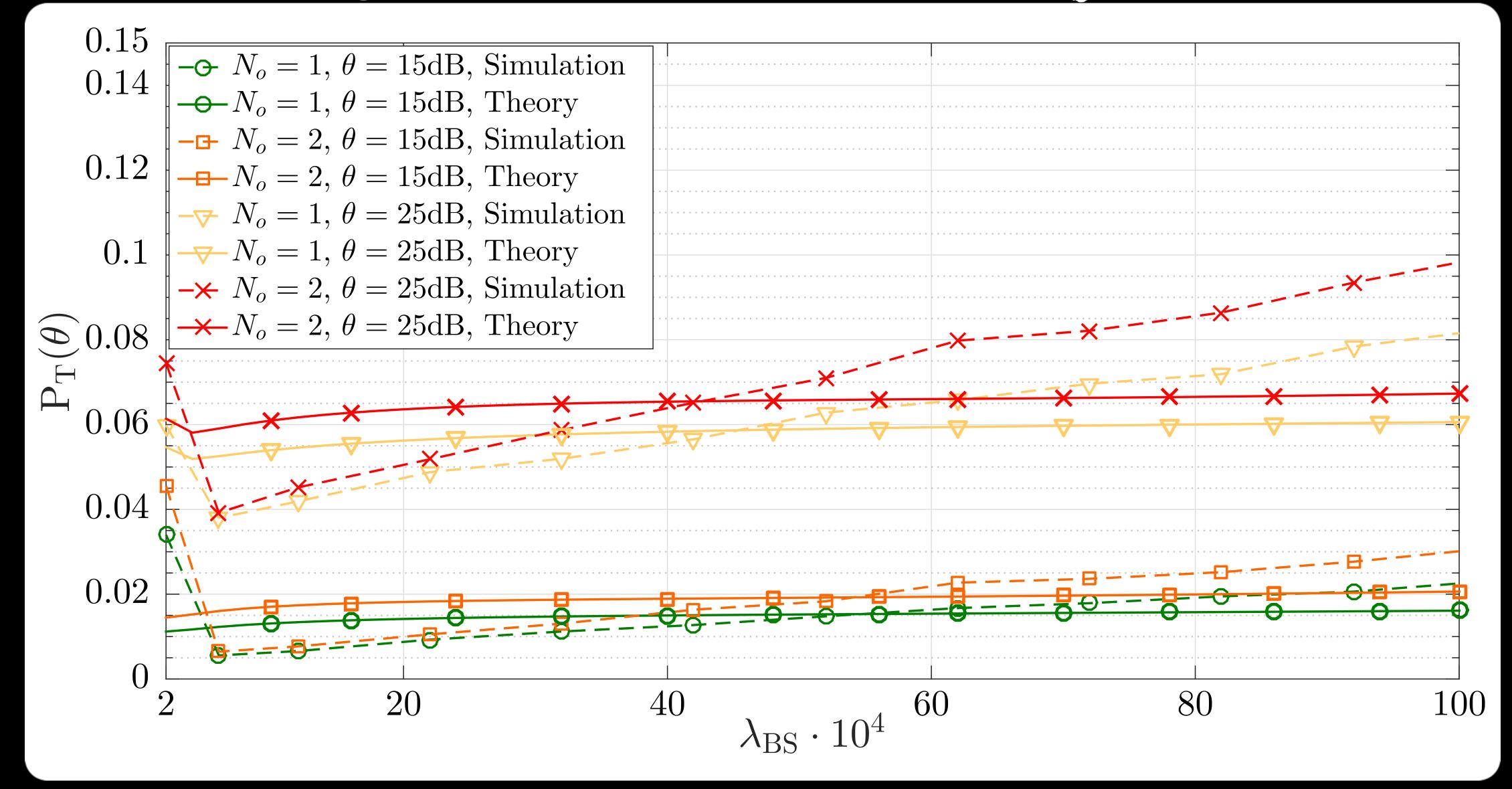


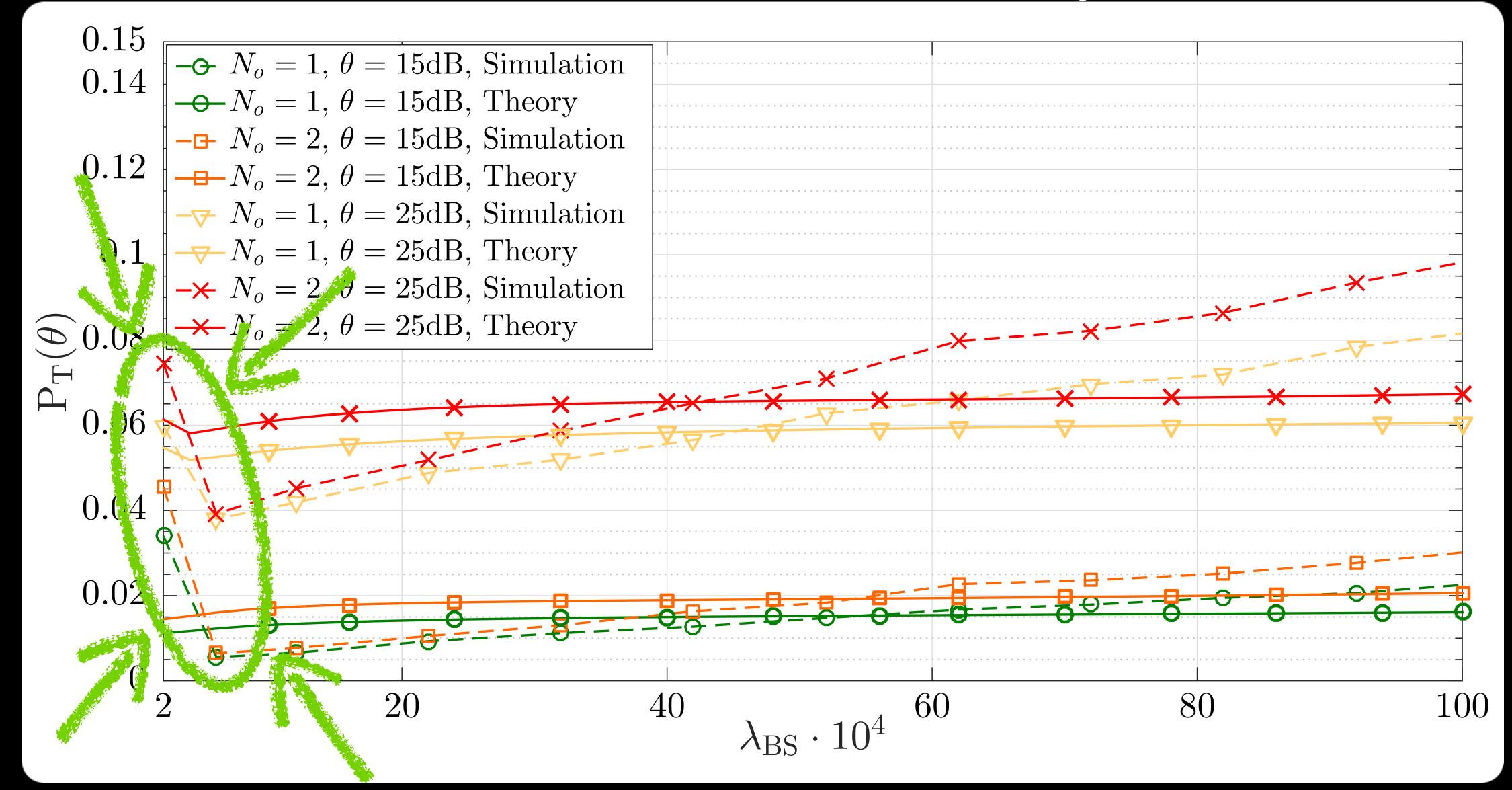


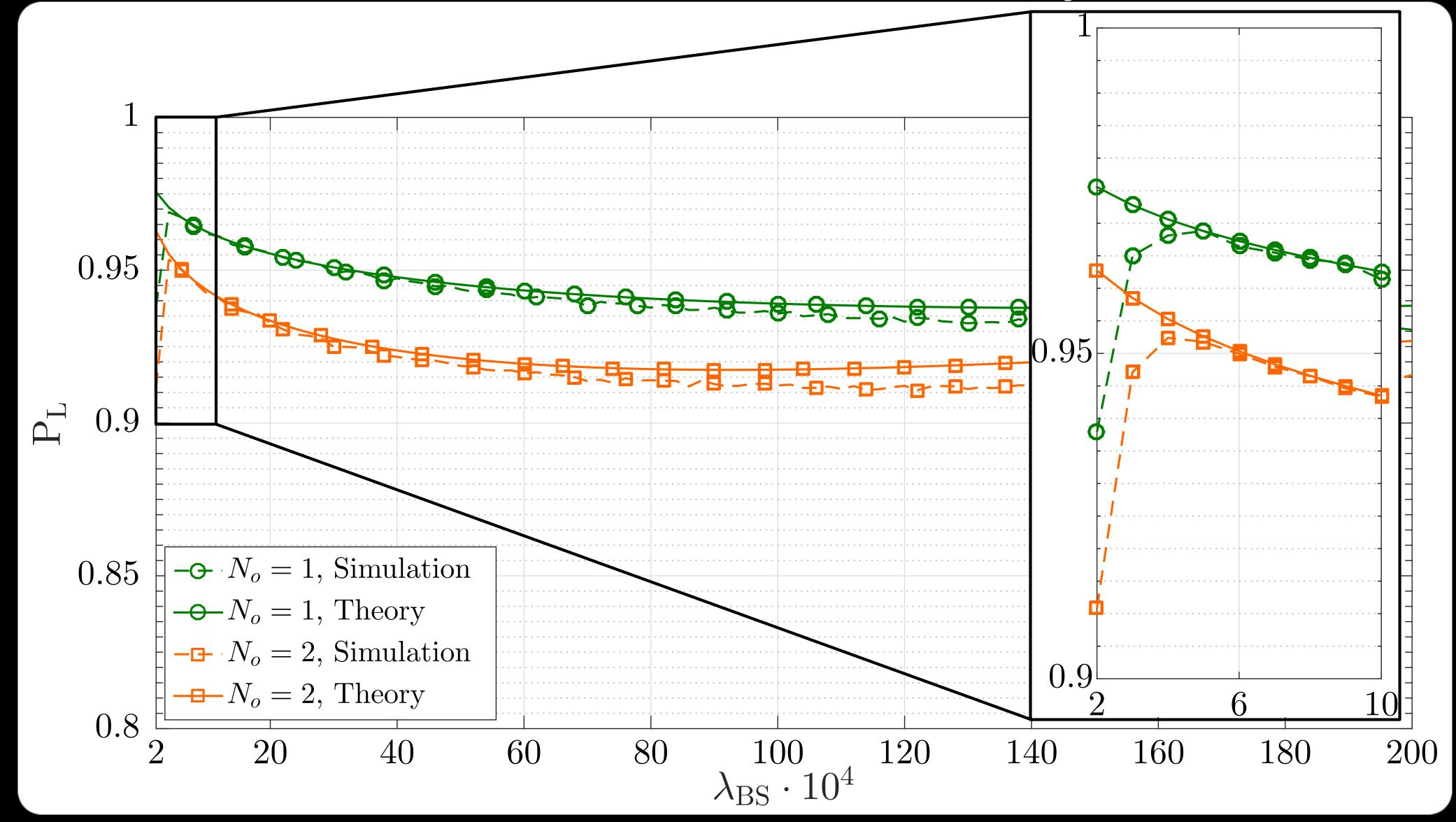




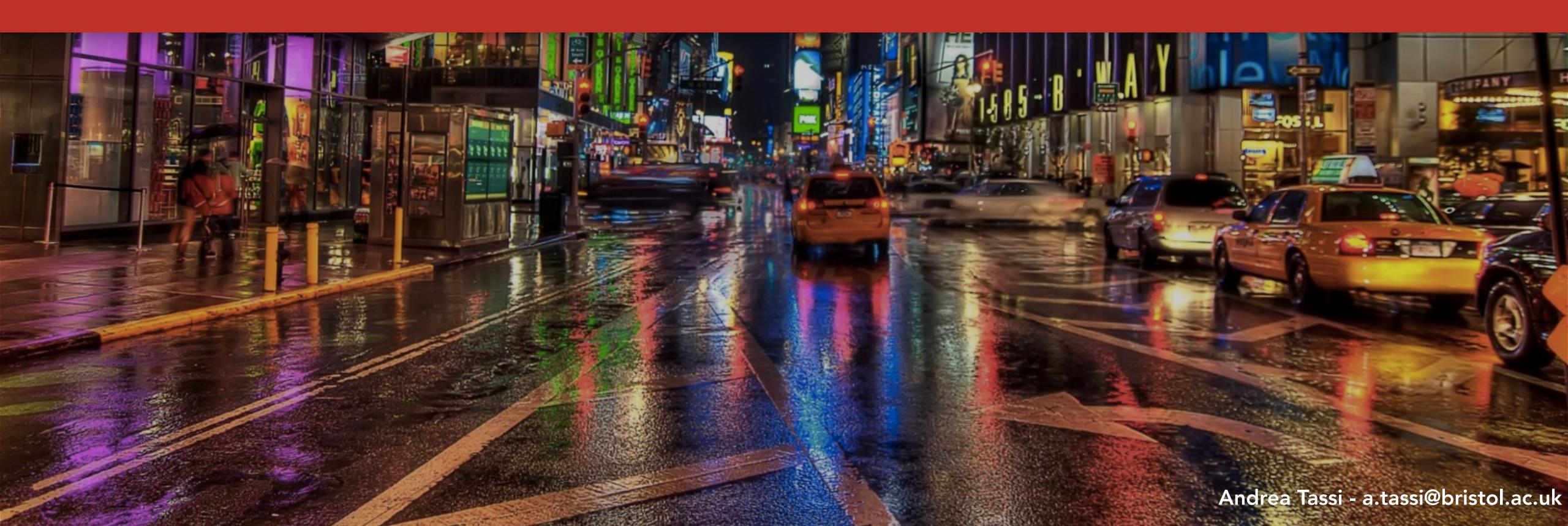








Conclusions



- The probability of being served by a NLOS BS cannot be considered negligible.
- By reducing the antenna beamwidth form 90° to 30° does not necessarily
 have a disruptive impact on the SINR outage probability, and hence, on
 the rate coverage probability.
- Differently to what happens in bi-dimensional mmWave cellular networks,
 the BSs density does not largely affect the network performance.
- Overall, for a fixed SINR threshold, the SINR outage probability tends to be minimized by density values associated to sparse network deployments.

University of Bristol

意念

Communication Systems and Network Group

Manks for your attention!

Millimeter-Wave Networks for Vehicular Communication: Modeling and Performance Insights

Andrea Tassi - a.tassi@bristol.ac.uk

Malcolm Egan - Université Blaise Pascal, Clermont-Ferrand, FR Robert J. Piechocki and Andrew Nix - University of Bristol, UK

37th Meeting of the Wireless World Research Forum

