Millimeter-Wave Networks for Vehicular **Communication:** Modeling and Performance Insights Andrea Tassi - a.tassi@bristol.ac.uk Malcolm Egan - Université Blaise Pascal, Clermont-Ferrand, FR

ECIT, Queen's University Belfast

University of Bristol Communication Systems and Network Group

Belfast, 8th July 2016

Index

- Why Should I Put Comms Onto Self-Driving Vehicles?
- ... and Why Should I go for mmWave Systems?
- Proposed mmWave V2I System Model
- Numerical Results
- Conclusions

mmWave Comms for Next Generation ITSs

- The IEEE 802.11p/DSRC can achieve at most ~27 Mbps, in practice it is hard to observe that.
- However, DSRC standards are suitable for low-rate data services (for e.g., positioning beacon, emergency stop messages, etc.).
- On the other hand, future CAVs will require solutions ensuring gigabit-persecond communication links to achieve proper 'look-ahed' services (involving cameras, LIDARS, etc.), etc.
- It is reasonable to design hybrid networks integrating both mmWave and DSRC technologies

mmWave Comms for Next Generation ITSs

Practical Highway Scenario

mmMave BSS placed at the side of the road

Practical Highway Scenario

mmMave BSs placed at the side of the road

Obstacles

Andrea Tassi - a.tass Dristol. .uk

System Model (Road Layout)

- Straight and homogeneous road section
- Vehicles are required to drive on the left hand side of the road
- We characterize the performance of a standard user placed at the origin of the axis. Andrea Tassi - a.tassi@bristol.ac.uk

System Model (BS Distribution)

- x-comp. of BS positions follow a 1D PPP of density λ_{BS}

• A BS is placed on a side of the road (upper/bottom side) with probability q = 0.5. Hence, BSs on a side of the road define a 1D PPP of density $q\lambda_{\rm BS}$

System Model (Blockage Distribution)

- Obstacles on each obstacle lane follow a 1D PPP of density $\lambda_{\mathrm{O},\ell}$
- each traffic direction is the same
- Each blockage is associated with a footprint of length au

Obstacle processes are independent but the blockage density of lane ℓ on

PL Model and User Association

- The PL function associated with BS *i* is
- The standard user always connects to the BS with the minimum PL component

We approximate $p_{\rm L}$ with the probability that no blockages are present within a distance of au/2 on either side of the ray connecting the user to a BS. Hence, our approximation is independent on the distance of BS i to O

 $\ell(r_i) = \mathbf{1}_{i,\mathrm{L}} C_{\mathrm{L}} r_i^{-\alpha_{\mathrm{L}}} + (1 - \mathbf{1}_{i,\mathrm{L}}) C_{\mathrm{N}} r_i^{-\alpha_{\mathrm{N}}}$

PL Model and User Association

HODS. Lane $p_{\rm L} \cong \left[e^{-\lambda_{\rm o},\ell \tau} \right]$ per driving direction $\ell = 1$

- The PL function associated with BS *i* is
- The standard user always connects to the BS with the minimum PL component

• We approximate $p_{\rm L}$ with the probability that no blockages are present within a distance of $\tau/2$ on either side of the ray connecting the user to a BS. Hence, our approximation is independent on the distance of BS i to O

110 PPP void probability

 $\ell(r_i) = \mathbf{1}_{i,\mathrm{L}} C_{\mathrm{L}} r_i^{-\alpha_{\mathrm{L}}} + (1 - \mathbf{1}_{i,\mathrm{L}}) C_{\mathrm{N}} r_i^{-\alpha_{\mathrm{N}}}$

System Model (Beam Steering)

- The main lobe of each BS is always entirely directed towards the road
- The user/BS beam alignment is assumed error-free
- The beam on an interfering BS is steered uniformly within 0° and 180°

SINR Outage and Rate Coverage

The Probability Framework

Assume the user connects to BS 1, we define the SINR as

SINR_O normalized chermal noise power

The Probability Framework

• Assume the user connects to BS 1, we define the SINR as

$SINR_O$ normalized thermal noise power

We characterize the following SINR outage $P_{T}(\theta)$

$$\mathbb{P}[\text{SINR}_O < \theta] = P_L - \mathbb{P}[\text{SINR}_O + P_N - \mathbb{P}[\text{SINR}_O$$

 $P_{CL}(\theta)$

 $> \theta$ and std. user served in LOS]

 $L_O > \theta$ and std. user served in NLOS

 $\overline{\mathrm{P}}_{\mathrm{CN}}(\theta)$

Probability of Being Served in LOS/NLOS The standard user connects to a NLOS BS with probability $ho \infty$ $P_{N} = \int_{w(N_{o}+1)}^{\infty} f_{N}(r) e^{-2\lambda_{L}\sqrt{A_{L}^{2}(r) - w^{2}(N_{o}+1)^{2}}} dr$ PDF of the closest PPP LOS void probability in the segment [0, AL(r)]

Probability of Being Served in LOS/NLOS

The standard user connects to a NLOS BS with probability

$\mathbf{r} \mathbf{x}$ $P_N =$ $Jw(N_o+1)$

 $f_{\rm N}(r)e^{-2\lambda_{\rm L}}\sqrt{A_{\rm L}^2(r)-w^2(N_o+1)^2}\,dr$

	obstacle lane 2
r_1	
۱ ا	$A_{\rm L}(r)$
	obstacle lane I
_	

assi - a.tassi@bristol.ac.uk

- The standard user connects to a NLOS BS with probability
 - where

• While, $P_{T_i} = 1 - P_N$

Coverage Probability Terms $P_{T}(\theta)$

Andrea Tassi - a.tassi@bristol.ac.uk

Andrea Tassi - a.tassi@bristol.ac.uk

 $P_{CN}(\theta)$

Coverage Probability Terms

$as h_1 \sim EXP(2)$

 $\stackrel{(ii)}{=} \int_{w(N_o+1)}^{+\infty} e^{-\frac{\sigma\theta}{\Delta_1 C_L} r_1^{\alpha_L}} \mathcal{L}_{I,L} \left(\frac{\theta r_1^{\alpha_L}}{\Delta_1 C_L}\right) f_L(r_1) F_N(A_N(r_1)) dr_1$

Prob. of not being served in NLOS*

close to O. Up to a point where P_{L} is (almost) 1. If so,

$$P_{T}(\theta) \cong 1 - \int_{w(N_{o}+1)}^{+\infty} e^{-\frac{1}{2}}$$

 $P_{CL}(\theta)$

As $lpha_{
m N}$ increases, in order to be convenient, a NLOS BS has to be quite

 $\frac{\theta \sigma}{\Delta_1 C_L} r_1^{\alpha_L} \mathcal{L}_{I,L} \left(\frac{\theta r_1^{\alpha_L}}{\Delta_1 C_L} \right) f_L(r_1) dr_1$

$$\begin{array}{l} \textbf{Coverage Probability} \\ & \mathbb{P}_{T}(\theta) \\ \hline \mathbb{P}[\text{SINR}_{O} < \theta] = \mathbb{P}_{L} - \mathbb{P}[\text{SINR}_{O} \\ & + \mathbb{P}_{N} - \mathbb{P}[\text{SINR}_{O} \end{array}$$

close to O. Up to a point where P_{T_i} is (almost) 1. If so,

$$P_{T}(\theta) \cong 1 - \int_{w(N_{o}+1)}^{+\infty} e^{-\frac{\theta\sigma}{\Delta_{1}C_{L}}r_{1}^{\alpha_{L}}} \mathcal{L}_{I,L}\left(\frac{\theta r_{1}^{\alpha_{L}}}{\Delta_{1}C_{L}}\right) f_{L}(r_{1}) dr_{1}$$

Terms

 $P_{CL}(\theta)$

The rate coverage follows from the Fubini's theorem (for a bandwidth W) $R_{C}(\kappa) = 1 - P_{T}(2^{\kappa/W} - 1)$

 $> \theta$ and std. user served in LOS] $L_O > \theta$ and std. user served in NLOS]

As $\alpha_{\rm N}$ increases, in order to be convenient, a NLOS BS has to be quite

 $P_{CN}(\theta)$

LI(S) at a glance...

A Fundamental Result

$$\mathcal{L}_{\mathrm{I}_{\mathrm{S},\mathrm{E}},\mathbb{E}_{1}}(s) \cong \prod_{\substack{\mathbb{S}_{1} \in \{\mathrm{U},\mathrm{B}\},\\(a,b,\Delta) \in \mathcal{C}_{|\mathrm{x}_{1}|,\mathbb{S}_{1},\mathbb{S}_{$$

Conditioned of being served in LOS/NLOS ($\mathbb{E}_1 = L, \mathbb{E}_1 = N$).

Where the fundamental Laplace transform term is...

We proved that the Laplace transform of the interference component generated by the BSs on the upper/bottom side of the road (S = U, S = B) that are in LOS/NLOS with the user (E = L, E = N) can be approximated as

$$\sqrt{\mathcal{L}_{\mathrm{I}_{\mathrm{S},\mathrm{E}},\mathbb{E}_{1}}(s;a,b,\Delta)}$$

 $|,\mathbb{S}_1,\mathbb{E}_1,\mathbb{S},\mathbb{E}$

A Fundamental Result

 $\mathcal{L}_{\mathrm{I}_{\mathrm{S},\mathrm{E}},\mathbb{E}_{1}}(s;a,b,\Delta) \cong \exp\left(-\left(\mathbb{E}_{h}[\Theta(h,\Delta)] + \mathbb{E}_{h}[\Lambda(h,\Delta)]\right)\right)$

 $\mathbb{E}_h\left[\Theta(h,\Delta)\right] = 2q\lambda_{\rm E} \quad x^-$

$\mathbb{E}_h\left[\Lambda(h,\Delta)\right] = -2q\lambda_{\rm E}(s\Delta)^{-1}$

 $\cdot_2 F_1$ CE

$$-\alpha_{\rm E}^{-1} \left(1 - \frac{1}{s\Delta x + 1} \right) \Big]_{x=a^{-\alpha_{\rm E}}}^{b^{-\alpha_{\rm E}}}$$

$$\frac{\frac{1}{\alpha_{\rm E}}}{\left[t(-t^{-1})^{-\frac{1}{\alpha_{\rm E}}}\Gamma\left(\frac{1}{\alpha_{\rm E}}+1\right)\right]_{t=-(s\Delta b^{-\alpha_{\rm E}}+1)^{-1}}^{-1}$$

$$\frac{1}{\alpha_{\rm E}}+1;\frac{1}{\alpha_{\rm E}}+2;-t\left[t\right]_{t=-(s\Delta a^{-\alpha_{\rm E}}+1)^{-1}}^{-1}$$

Andrea Tassi - a.tassi@bristol.ac.uk

A Fundamental Result

$\mathbb{E}_h\left[\Theta(h,\Delta)\right] = 2q\lambda_{\rm E} \quad x^-$

$\mathbb{E}_h\left[\Lambda(h,\Delta)\right] = -2q\lambda_{\rm E}(s\Delta)^{-1}$

 $\cdot_{2}F_{1}$ αE

 $\mathcal{L}_{\mathrm{I}_{\mathrm{S},\mathrm{E}},\mathbb{E}_{1}}(s,a,b,\Delta) \cong \exp\left(-\left(\mathbb{E}_{h}[\Theta(h,\Delta)] + \mathbb{E}_{h}[\Lambda(h,\Delta)]\right)\right)$

$$-\alpha_{\rm E}^{-1} \left(1 - \frac{1}{s\Delta x + 1} \right) \Big]_{x=a^{-\alpha_{\rm E}}}^{b^{-\alpha_{\rm E}}}$$

$$\frac{\frac{1}{\alpha_{\rm E}}}{\left[t(-t^{-1})^{-\frac{1}{\alpha_{\rm E}}}\Gamma\left(\frac{1}{\alpha_{\rm E}}+1\right)\right]_{t=-(s\Delta b^{-\alpha_{\rm E}}+1)^{-1}}^{-1}$$

$$\frac{1}{\alpha_{\rm E}}+1;\frac{1}{\alpha_{\rm E}}+2;-t\left[t\right]_{t=-(s\Delta a^{-\alpha_{\rm E}}+1)^{-1}}^{-1}$$

Parametrization of $\mathcal{L}_{I_{S,E},\mathbb{E}_{1}}$ For simplicity, we assume that the TX antenna gain is always equal to the

- minimum value.
- However, we characterize the RX antenna gain.

Parametrization of $\mathcal{L}_{\mathrm{I}_{\mathrm{S},\mathrm{E}}},\mathbb{E}_{1}$ For simplicity, we assume that the TX antenna gain is always equal to the

- minimum value.
- However, we characterize the RX antenna gain.

No other LOS BSs can be present in this interval

Parametrization of $\mathcal{L}_{I_{S,E},\mathbb{E}_{1}}$ For simplicity, we assume that the TX antenna gain is always equal to the

minimum value.

However, we characterize the RX antenna gain.

+

N)

 \mathcal{O}

Parametrization of $\mathcal{L}_{I_{S,E},\mathbb{E}_{1}}$

$< S_1, \mathbb{E}_1, S, E >$	Conditions on $ x_1 $	$(a, b, \Delta) \in \mathcal{C}_{ \mathbf{x}_1 , \mathbb{S}_1, \mathbb{E}_1, \mathbb{S}, \mathbb{E}_1}$				
	For any $ x_1 $	$(x_1 , K, g_{\mathrm{TX}}G_{\mathrm{RX}}),$				
	such that $J > 0$	$(K, +\infty, g_{\mathrm{TX}}g_{\mathrm{RX}}),$				
		$(x_1 , +\infty, g_{\mathrm{TX}}g_{\mathrm{RX}})$				
		$(x_1 , K, g_{\mathrm{TX}}G_{\mathrm{RX}}),$				
	For any $ x_1 $	$(K, +\infty, g_{\mathrm{TX}}g_{\mathrm{RX}}),$				
	such that $J \leq 0$	$(x_1 , J , g_{\mathrm{TX}}G_{\mathrm{RX}}),$				
		$(J , +\infty, g_{\mathrm{TX}}g_{\mathrm{RX}})$				
		$(x_{\mathrm{N}}(r_{1}), J, g_{\mathrm{TX}}g_{\mathrm{RX}}),$				
	For any $ x_1 $	$(x_{\mathrm{N}}(r_{1}), +\infty, g_{\mathrm{TX}}g_{\mathrm{RX}}),$				
$\langle U, L, U, N \rangle$	such that $J > 0$	$(J, K, g_{\mathrm{TX}}G_{\mathrm{RX}}),$				
		$(K, +\infty, g_{\mathrm{TX}}g_{\mathrm{RX}})$				
		Refer to the case				
	For any $ x_1 $	$< U, L, U, L > (J \le 0)$				
	such that $J \leq 0$	and replace $ x_1 $				
		with $x_{\rm N}(r_1)$				
	For any $ r_1 $	$(x_1 , +\infty, g_{\mathrm{TX}}g_{\mathrm{RX}}),$				
		$(x_1 , +\infty, g_{\mathrm{TX}}g_{\mathrm{RX}}),$				
< U L B N >	Refer to the case	e < U, L, B, L > and				
	replace x	$_1$ with $x_N(r_1)$				
	For any $ x_1 $	Refer to the case				
< U N U L >	such that $x_{\rm T}(r_1) > K$	< U, L, B, L > and				
		replace $ x_1 $ with $x_L(r_1)$				
	For any $ x_1 $	Refer to the case				
	such that $x_{\rm T}(r_1) < K$	< U, L, U, L > and				
		replace $ x_1 $ with $x_L(r_1)$				
< U, N, U, N >	Refer to the ca	ase $< U, L, U, L >$				
	Refer to the case	e < U, L, B, L > and				
	replace x	1 with $x_{\rm L}(r_1)$				
< U, N, B, N >	Refer to the ca	ase $< U, L, B, \overline{L} >$				
Cases where	Refer to the c	correspondent cases				
$\mathbb{S}_1 = \mathbb{B}, \mathbb{S} = \mathbb{B}$	where \mathbb{S}_1 =	= U and S = U				
Cases where	Refer to the c	correspondent cases				
$\mathbb{S}_1 = \mathbb{B}, \mathbb{S} = \mathbb{U}$	where $S_1 =$	= U and S = B				

Finally, we can say

$$\mathcal{L}_{\mathrm{I},\mathbb{E}_{1}}(s) \cong \prod_{\mathrm{S}\in\{\mathrm{U},\mathrm{B}\},\mathrm{E}\in\{\mathrm{L},\mathrm{N}\}} \mathcal{L}_{I_{\mathrm{S},\mathrm{E}},\mathbb{E}_{1}}(s)$$

• For e.g., if $\mathbb{E}_1 = L$ and J > 0, it follows

$\mathcal{L}_{\mathrm{I},\mathbb{E}_1}(s) \cong \mathcal{L}_{\mathrm{I}_{\mathrm{S},\mathrm{E}},\mathbb{E}_1}(s;|x_1|,K,g_{\mathrm{TX}}G_{\mathrm{RX}})$ $\cdot \mathcal{L}_{\mathrm{I}_{\mathrm{S},\mathrm{E}},\mathbb{E}_{1}}(s; x_{\mathrm{N}}(r_{1}), J, g_{\mathrm{TX}}g_{\mathrm{RX}})$ $\cdot \mathcal{L}_{\mathrm{I}_{\mathrm{S},\mathrm{E}},\mathbb{E}_{1}}(s;J,K,g_{\mathrm{TX}}G_{\mathrm{RX}})$ $\cdot \left(\mathcal{L}_{\mathrm{I}_{\mathrm{S},\mathrm{E}},\mathbb{E}_{1}}(s;K,+\infty,g_{\mathrm{TX}}g_{\mathrm{RX}}) \right)^{2}$ $\cdot \left(\mathcal{L}_{\mathrm{I}_{\mathrm{S},\mathrm{E}},\mathbb{E}_{1}}(s;|x_{1}|,+\infty,g_{\mathrm{TX}}g_{\mathrm{RX}}) \right)^{3}$ $\cdot \left(\mathcal{L}_{\mathrm{I}_{\mathrm{S},\mathrm{E}},\mathbb{E}_{1}}(s;x_{\mathrm{N}}(r_{1}),+\infty,g_{\mathrm{TX}}g_{\mathrm{RX}}) \right)^{3}$

Numerical Results

LOS vs. NLOS

Andrea Tassi - a.tassi@bristol.ac.uk

				333))		-	•	-				•				•
							-		-	•		•			•	•	
•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•		•	•		•	•		•	•		•	•	
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•		•		•	•	•		•	•		•	•	
												-					

Andrea Tassi - a.tassi@bristol.ac.uk

				333))		-	•	-				•				•
							-		-	•		•			•	•	
•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•		•	•		•	•		•	•		•	•	
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•		•		•	•	•		•	•		•	•	
												-					

-0-0-0		8-8-8-8-8			
000	00000	8		▝₿੶₿੶₿੶₿	
	00	000			
		- 0 0 0	∞		•••••
			Q		
				Q Q Q X	
				X	
					Ň
200	400	500	600	700	<u> </u>
300	400		000	100	800
	κ (IV)	Lops)			
	Τ	1			
	$IV_O =$	= 1			

0-0-0					
					· · · · · · · · · · · · · · · · · · ·
300	$400 \ \kappa (\mathrm{M}$	500 [bps)	600	700	800
	$N_o =$	= 2			

Conclusions

What Have we seen?

- The probability of being served by a NLOS BS cannot be considered negligible.
- the rate coverage probability.
- the BSs density does not largely affect the network performance.

By reducing the antenna beamwidth form 30° to 90° does not necessarily have a disruptive impact on the the SINR outage probability, and hence, on

Differently to what happens in bi-dimensional mmWave cellular networks,

Overall, for a fixed SINR threshold, the SINR outage probability tends to be minimized by density values associated to sparse network deployments.

University of Bristol Communication Systems and Network Group

Millimeter-Wave Networks for Vehicular **Communication:** Modeling and Performance Insights Andrea Tassi - a.tassi@bristol.ac.uk

ECIT, Queen's University Belfast

Thanks for your attention!

Belfast, 8th July 2016

