School of Computing and Communications

R2D2: Network error control for Rapid and Reliable Data Delivery Project supported by EPSRC under the First Grant scheme (EP/L006251/1)

On Optimization of Network-coded Scalable Multimedia Service Multicasting

Andrea Tassi and Ioannis Chatzigeorgiou \{a.tassi, i.chatzigeorgiou\}@lancaster.ac.uk

University of Bristol
Bristol, $5^{\text {th }}$ February 2015

Starting Point and Goals

- Delivery of multimedia broadcast/multicast services over 4G/5G networks is a challenging task. This has propelled research into delivery schemes.
- Multi-rate Transmission (MrT) strategies have been proposed as a means of delivering layered services to users experiencing different downlink channel conditions.
- Layered service consists of a basic layer and multiple enhancement layers.

Goals

- Error control - Ensure that a predetermined fraction of users achieves a certain service level with at least a given probability
- Resource optimisation - Reduce the total amount of radio resources needed to deliver a layered service.

Index

1. System Parameters and Performance Analysis
2. Multi-Channel Resource Allocation Models and Heuristic Strategies
3. Analytical Results
4. Concluding Remarks

1. System Parameters and Performance Analysis

System Model

- One-hop wireless communication system composed of one source node and U users

- Each PtM layered service is delivered through C orthogonal broadcast erasure subchannels

- Each subchannel delivers streams of (en)coded packets (according to the RLNC principle).

Non-Overlapping Layered RNC

$\bigcirc \mathbf{x}=\left\{x_{1}, \ldots, x_{K}\right\} \quad$ is a layered source message of K source packets, classified into L service layers

- Encoding performed over each service layer independently from the others.
- The source node will linearly combine the k_{l} data packets composing the l-th layer $\mathbf{x}_{l}=\left\{x_{i}\right\}_{i=1}^{k_{l}}$ and will generate a stream of $n_{l} \geq k_{l}$ coded packets $\mathbf{y}=\left\{y_{j}\right\}_{j=1}^{n_{l}}$, where

$$
y_{j}=\sum_{i=1}^{k_{l}} g_{j, i} x_{i} \begin{aligned}
& \text { Coefficients of the } \\
& \begin{array}{l}
\text { linear combination } \\
\text { are selected over a } \\
\text { finite field of size q ity }
\end{array}
\end{aligned}
$$

Non-Overlapping Layered RNC

- User u recovers layer l if it will collect k_{l} linearly independent coded packets. The prob. of this event is

Prob. of receiving r out of $n_{l, u}$ coded symbols

$$
\begin{aligned}
\mathrm{P}_{l}\left(n_{l, u}\right) & =\sum_{r=k_{l}}^{n_{l, u}} \underbrace{\binom{n_{l, u}}{r} p^{n_{l, u}-r}(1-p)^{r}} \underbrace{h(r)} \underbrace{\begin{array}{c}
\text { Prob. of decoding } \\
\text { layer l }
\end{array}} \\
& =\sum_{r=k_{l}}^{n_{l, u}}\binom{n_{l, u}}{r} p^{n_{l, u}-r}(1-p)^{r} \prod_{i=0}^{k_{l}-1}\left[1-\frac{1}{q^{r-i}}\right]
\end{aligned}
$$

o The probability that user u recover the first l service layers is

$$
\underset{\mathrm{NO}, l}{\mathrm{D}_{\mathrm{NO}}^{\text {puting }} \mathbf{c a t i o n s}}\left(n_{1, u}, \ldots, n_{L, u}\right)=\mathrm{D}_{\mathrm{NO}, l}\left(\mathbf{n}_{u}\right)=\prod_{i=1} \mathrm{P}_{i}\left(n_{i, u}\right)
$$

Expanding Window Layered RNC

- We define the l-th window \mathbf{X}_{l} as the set of source packets belonging to the first l service layers. Namely, $\mathbf{X}_{l}=\left\{x_{j}\right\}_{j=1}^{K_{l}}$ where $K_{l}=\sum_{i=1}^{l} k_{i}$

- The source node (i) linearly combines data packets belonging to the same window, (ii) repeats this process for all windows, and (iii) broadcasts each stream of coded packets over one or more subchannels

Expanding Window Layered RNC

o The probability $\mathrm{D}_{\mathrm{EW}, l}$ of user u recovering the first l layers (namely, the l-th window) can be written as

$$
\begin{aligned}
& \mathrm{D}_{\mathrm{EW}, l}\left(N_{1, u}, \ldots, N_{L, u}\right)=\quad \begin{array}{c}
\text { Prob. of receiving } \mathbf{r}=\left\{r_{1}, \ldots, r_{l}\right\} \text { out } \\
\text { of } \mathbf{N}_{u} \text { coded symbols }
\end{array} \\
& =\mathrm{D}_{\mathrm{EW}, l}\left(\mathbf{N}_{u}\right) \\
& \quad=\sum_{r_{1}=0}^{N_{1, u}} \cdots \sum_{r_{l-1}=0}^{N_{l-1, u}} \sum_{r_{l}=r_{\text {min }},}^{N_{l, u}}\binom{N_{1, u}}{r_{1}} \cdots\binom{N_{l, u}}{r_{l}} p^{\sum_{i=1}^{l}\left(N_{i, u}-r_{i}\right)}(1-p)^{\sum_{i=1}^{l} r_{i}} g_{l}(\mathbf{r})
\end{aligned}
$$

Prob. of decoding window 1

- Sums allow us to consider all the possible combinations of received coded packets

2. Multi-Channel Resource Allocation Models

Allocation Patterns

Separated Allocation Pattern

School of Computing and Communications

Allocation Patterns

School of Computing and Communications

NO-MA Model

○ Consider the variable $\lambda_{u, l}=I\left(\mathrm{D}_{\mathrm{NO}, l}\left(\mathbf{n}_{u}\right) \geq \hat{D}\right)$. It is 1 , if u can recover the first llayers with a probabil $\begin{aligned} & \text { itmonom } \\ & \text { No. of packets of layer } l\end{aligned}$ Minimization of ise it is 0 . resource footprint

$$
\text { (NO-MA) } \min _{\substack{m_{1}, \ldots, m_{C} \\ n^{(1, c)}, \ldots, n^{(L, c)}}} \sum_{l=1}^{L} \sum_{c=1}^{C} n^{(l, c)}
$$ delivered over c

NO-MA Model

- Consider the variable $\lambda_{u, l}=I\left(\mathrm{D}_{\mathrm{NO}, l}\left(\mathbf{n}_{u}\right) \geq \hat{D}\right)$. It is 1 , if u can recover the first l layers with a probability value $\geq \hat{D}$, otherwise it is 0 .
 achieved by a predetermined fraction of users

NO-MA Model

- Consider the variable $\lambda_{u, l}=I\left(\mathrm{D}_{\mathrm{NO}, l}\left(\mathbf{n}_{u}\right) \geq \hat{D}\right)$. It is 1 , if u can recover the first l layers with a probability value $\geq \hat{D}$, otherwise it is 0 .

$$
\begin{array}{rll}
\text { (NO-MA) } & \min _{\substack{m_{1}, \ldots, m_{C} \\
n^{(1, c)}, \ldots, n^{(L, c)}}} \sum_{l=1}^{L} \sum_{c=1}^{C} n^{(l, c)} \\
\text { subject to } & \sum_{u=1}^{U} \lambda_{u, l} \geq U \hat{t}_{l} & l=1, \ldots, L \\
& m_{c-1}<m_{c} & c=2, \ldots, L \\
\begin{array}{c}
\text { Dynamic- and } \\
\text { systems-related } \\
\text { constraints }
\end{array} & 0 \leq \sum_{l=1}^{L} n^{(l, c)} \leq \hat{B}_{c} & c=1, \ldots, C
\end{array}
$$

NO-MA Heuristic

o The NO-MA is an hard integer optimisation problem because of the coupling constraints among variables

- We propose a two-step heuristic strategy
i. MCSs optimisation $\left(m_{1}, \ldots, m_{C}\right)$
ii. No. of coded packet per-subchannel optimization $\left(n^{(1, c)}, \ldots, n^{(L, c)}\right)$
- The first step selects the value of m_{c} such that packets delivered through subch. c are received (at least with a target prob.) by $U \cdot \hat{t}_{c}$ users.

NO-MA Heuristic

- The idea behind the second step can be summarised as follows

NO-MA Heuristic

- The idea behind the second step can be summarised as follows

```
Step 2 Coded packet allocation for a the NO-MA case.
    \(c \leftarrow 1\)
    \(\bar{n}^{(l, c)} \leftarrow 1\) for any \(l=1, \ldots, L\) and \(c=1, \ldots, C\)
    \(\overline{\mathbf{n}}=\left\{\bar{n}^{(l)}\right\}_{l=1}^{L}\), where \(\bar{n}^{(l)} \leftarrow 1\) for any \(l=1, \ldots, L\)
    for \(l \leftarrow 1, \ldots, L\) do
        while \(\mathrm{D}_{\mathrm{NO}, l}(\overline{\mathbf{n}})<\hat{D}\) and \(c \leq C\) do
        \(\bar{n}^{(l, c)} \leftarrow \bar{n}^{(l, c)}+1\)
        \(\bar{n}^{(l)} \leftarrow \sum_{t=1}^{C} \bar{n}^{(l, t)}\) for any \(l=1, \ldots, L\)
        if \(\sum_{t=1}^{L} \bar{n}^{(t, c)}=\hat{B}_{c}\) then
                \(c \leftarrow c+1\)
            end if
        end while
        if \(\mathrm{D}_{\mathrm{NO}, l}(\overline{\mathbf{n}})<\hat{D}\) and \(c>C\) then
            no solution can be found.
        end if
    end for
```


EW-MA Model

- Consider the EW delivery mode

- We define the indicator variable

$$
\mu_{u, l}=I\left(\bigvee_{t=l}^{L}\left\{\mathrm{D}_{\mathrm{EW}, t}\left(\mathbf{N}_{u}\right) \geq \hat{D}\right\}\right)
$$

User u will recover the first l service layers (at least) with probability \hat{D} if any of the windows $l, l+1, \ldots, L$ are recovered (at least) with probability \hat{D}

EW-MA Model

- The RA problem for the EW-MA case is

No. of packets of window l delivered over c
(EW-MA)

$$
\begin{equation*}
\min _{\substack{m_{1}, \ldots, m_{C} \\ N^{(1, c)}, \ldots, N^{(L, c)}}} \sum_{l=1}^{L} \sum_{c=1}^{C} N^{(l, c)} \tag{1}
\end{equation*}
$$

○ It is still an hard integer optimisation problem but the previously proposed heuristic strategy can be still applied.

"Egalitarian" Model

- Previous strategies ensure minimum SLA and minimize the resource footprint. Point of view of the ISP...
- Best practice for burglars - To still object with the maximum value and the minimum weight. The profit-cost ratio is maximized.

- We can refer to the previous heuristics.

3. Analytical Results

Analytical Results (part 1)

- LTE-A eMBMS scenarios
- We compared the proposed strategies wit' rate Transmission strategy

No error control strategies
It is a maximization of the sum of the user QoS are allowed (ARQ, RLNC, etc.)

- System performance was evaluated in terms of

Analytical Results (part 1)

- LTE-A eMBMS scenarios
- We compared the proposed strategies wit' rate Transmission strategy

No error control strategies
It is a maximization of the sum of the user QoS are allowed (ARQ, RLNC, etc.)

- System performance was evaluated in terms of

PSNR after recovery of the basic and the first l enhancement layers

$$
\rho(u)=\left\{\begin{array}{l}
\max _{l=1, \ldots, L}\left\{\operatorname{PSNR}_{l} \mathrm{D}_{\mathrm{NO}, l}^{(u)}\right\}, \text { for NO-RNC } \\
\max _{l=1, \ldots, L}\left\{\operatorname{PSNR}_{l} \mathrm{D}_{\mathrm{EW}, l}^{(u)}\right\}, \text { for EW-RNC }
\end{array}\right.
$$

Analytical Results (part 1)

Scenario with a high heterogeneity. 80 UEs equally spaced and placed along the radial line representing the symmetry axis of one sector of the target cell

We considered Stream A and B which have 3 layers, bitrate of A is smaller than that of B

Analytical Results (part 1)

Stream A

Analytical Results (part 1)

Stream B

Analytical Results (part 2)

- LTE-A allows multiple contiguous BS to deliver (in a synchronous fashion) the same services by means of the same signals

4-BS SFN, 1700 users placed at the vertices of a regular square grid placed on the playground.

Analytical Results (part 2)

- Also in this case MrT cannot ensure the desired coverage!

Analytical Results (part 2)

- Also in this case MrT cannot ensure the desired coverage!

4. Concluding Remarks

Concluding Remarks

- Definition of a generic system model that can be easily adapted to practical scenarios and different viewpoints (ISP vs users).
- Derivation of the theoretical framework to assess user QoS
- Definition of efficient resource allocation frameworks, that can jointly optimise both system parameters and the error control strategy in use
- Development of efficient heuristic strategies that can derive good quality solutions in a finite number of steps.

For more information http:/ / arxiv.org/abs/1411.5547

or
http://goo.gl/Z4Y9YF

A. Tassi, I. Chatzigeorgiou, and D. Vukobratović, "Resource Allocation Frameworks for Network-coded Layered Multimedia Multicast Services",

IEEE Journal on Selected Areas in Communications, Special Issue on "Fundamental Approaches to Network Coding in Wireless Communication Systems", in press.

$$
\begin{aligned}
& \text { Thank you for } \\
& \text { your attention }
\end{aligned}
$$

School of Computing and Communications

R2D2: Network error control for Rapid and Reliable Data Delivery Project supported by EPSRC under the First Grant scheme (EP/L006251/1)

On Optimization of Network-coded Scalable Multimedia Service Multicasting

Andrea Tassi and Ioannis Chatzigeorgiou \{a.tassi, i.chatzigeorgiou\}@lancaster.ac.uk

University of Bristol
Bristol, $5^{\text {th }}$ February 2015

